【洛谷P1072】Hankson 的趣味题
题目大意:给定四个数字 a,b,c,d,求满足 \(gcd(a,x)=b,lcm(c,x)=d\) 的 x 的个数。
题解:
解法1:根据 lcm 的性质,x 一定为 d 的约数。因此,直接枚举 d 的约数,并判断是否满足上述条件即可,时间复杂度较高。
解法2:解法一中直接枚举约数会导致有大量不满足条件的数字被枚举,导致复杂度的升高。仔细观察最大公约数和最小公倍数的性质可知,在算术基本定理中体现为质因子幂之间的联系。同时,x 的个数也可以转化成有多少种质因子分解使得上述条件成立。因此,在这里直接枚举 d 的每一个质因子,并利用算术基本定理之间的关系即可得知 x 的每一位的可能组成情况,最后利用乘法原理即可。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int n,a,b,c,d;
long long ans;
vector<int> p;
bool vis[maxn];
void prework(){
vis[1]=1;
for(int i=2;i<=1e5;i++)if(!vis[i]){
p.push_back(i);
for(int j=i;j<=1e5/i;j++)vis[i*j]=1;
}
}
void solve(int pri){
int pa=0,pb=0,pc=0,pd=0;
while(a%pri==0)a/=pri,++pa;
while(b%pri==0)b/=pri,++pb;
while(c%pri==0)c/=pri,++pc;
while(d%pri==0)d/=pri,++pd;
if(pa==pb&&pd==pc)ans*=(pd-pb+1);
else if(pa>pb&&pd>pc&&pb==pd)ans*=1;
else if(pa>pb&&pd==pc)ans*=1;
else if(pa==pb&&pd>pc)ans*=1;
else ans=0;
}
void solve(){
scanf("%d",&n);
while(n--){
ans=1;
scanf("%d%d%d%d",&a,&b,&c,&d);
for(int i=0;i<p.size();i++)if(d%p[i]==0)solve(p[i]);
if(d!=1)solve(d);
printf("%lld\n",ans);
}
}
int main(){
prework();
solve();
return 0;
}
【洛谷P1072】Hankson 的趣味题的更多相关文章
- 洛谷 P1072 Hankson 的趣味题 解题报告
P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...
- 洛谷P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- Java实现洛谷 P1072 Hankson 的趣味题
P1072 Hankson 的趣味题 输入输出样例 输入 2 41 1 96 288 95 1 37 1776 输出 6 2 PS: 通过辗转相除法的推导 import java.util.*; cl ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- 洛谷P1072 Hankson 的趣味题(题解)
https://www.luogu.org/problemnew/show/P1072(题目传送) 数学的推理在编程的体现越来越明显了.(本人嘀咕) 首先,我们知道这两个等式: (a0,x)=a1,[ ...
- 洛谷 P1072 Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- [NOIP2009] 提高组 洛谷P1072 Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- 洛谷P1072 Hankson的趣味题
这是个NOIP原题... 题意: 给定 a b c d 求 gcd(a, x) = b && lcm(c, x) = d 的x的个数. 可以发现一个朴素算法是从b到d枚举,期望得分50 ...
- 洛谷 - P1072 Hankson - 的趣味题 - 质因数分解
https://www.luogu.org/problemnew/show/P1072 一开始看了一看居然还想放弃了的. 把 \(x,a_0,a_1,b_0,b_1\) 质因数分解. 例如 \(x=p ...
- 洛谷 P1072 Hankson 的趣味题 || 打质数表的分解质因数
方法就是枚举,根据b0和b1可以大大减小枚举范围,方法类似这个http://blog.csdn.net/hehe_54321/article/details/76021615 将b0和b1都分解质因数 ...
随机推荐
- 从零开始搭建属于你的React/redux/webpack脚手架
大家好,我是苏南,今天要给大家分享的是<<我的react入门到放弃之路>>,当然,也不是真的放弃啦--哈哈,这篇博客原本是从17年初写的,一直没有在csdn发布,希望今天不会太 ...
- 关于Runtime error
别人说的,但我感觉是因为你的操作是不符合语言规定的,让编译器无法识别,运行不出
- [BUAA软工]第二次博客作业---结对编程
[BUAA软工]结对作业 项目 内容 这个作业属于哪个课程 北航软工 这个作业的要求在哪里 2019年软件工程基础-结对项目作业 我在这个课程的目标是 学习如何以团队的形式开发软件,提升个人软件开发能 ...
- 《Linux内核设计与实现》第4章读书整理
第四章 进程调度 4.1多任务 无论在单处理器或者多处理机器上,多任务操作系统都能使多个进程处于堵塞或者睡眠状态. 非抢占式多任务:除非进程自己主动停止运行,否则它会一直执行. 抢占式多任务:进程 ...
- Linux内核第五节 20135332武西垚
20135332武西垚 在MenuOS中通过添加代码增加自定义的系统调用命令 使用gdb跟踪调试内核 简单分析system_call代码了解系统调用在内核代码中的处理过程 由于本周实验是在Kali虚拟 ...
- 个人git链接和git学习心得总结
个人git链接和git学习心得总结 个人git链接: https://github.com/hanzhaoyan Git 是 Linux 的创始人 Linus Torvalds 开发的开源和免费的版本 ...
- 微信小程序cavas画图并保存
需求背景: 因微信小程序暂不支持一键分享到朋友圈功能,故要生成图片并保存到手机相册就有两种情况: 1.需保存的图片为静态固定图片.这种情况图片可直接由后端返回,再调用小程序相应api直接保存到手机相册 ...
- SQL语句及5.7.2 mysql 用户管理
一.用户的定义 1.1 用户名+主机域 此处为5.7.2版本的mysql当中password字段已改为authentication_string mysql> select user,host, ...
- Linux技巧汇总
Linux改变用户登录的Shell: usermod -s /bin/zsh 用户名 改变文件夹.文件的所属用户组和用户 chown root:root testfile
- activiti 选人的实现
activiti默认是不带有选人的功能的,它默认的是在调用complete 方法的时候自动根据下一个节点的 assignee属性或者candidate属性 设置下一节点的候选人或者 assginee. ...