在事件处理层(evdev.c)中结构体evdev_client定义了一个环形缓冲区(circular buffer),其原理是用数组的方式实现了一个先进先出的循环队列(circular queue),用以缓存内核驱动上报给用户层的input_event事件。

struct evdev_client {
unsigned int head; // 头指针
unsigned int tail; // 尾指针
unsigned int packet_head; // 包指针
spinlock_t buffer_lock;
struct fasync_struct *fasync;
struct evdev *evdev;
struct list_head node;
unsigned int clk_type;
bool revoked;
unsigned long *evmasks[EV_CNT];
unsigned int bufsize; // 循环队列大小
struct input_event buffer[]; // 循环队列数组
};

evdev_client对象维护了三个偏移量:head、tail以及packet_head。head、tail作为循环队列的头尾指针记录入口与出口偏移,那么包指针packet_head有什么作用呢?

packet_head

内核驱动处理一次输入,可能上报一到多个input_event事件,为表示处理完成,会在上报这些input_event事件后再上报一次同步事件。头指针head以input_event事件为单位,记录缓冲区的入口偏移量,而包指针packet_head则以“数据包”(一到多个input_event事件)为单位,记录缓冲区的入口偏移量。

环形缓冲区的工作机制

  • 循环队列入队算法:
head++;
head &= bufsize - 1;
  • 循环队列出队算法:
tail++;
tail &= bufsize - 1;
  • 循环队列已满条件:
head == tail
  • 循环队列为空条件:
packet_head == tail

“求余”和“求与”

为解决头尾指针的上溢和下溢现象,使队列的元素空间可重复使用,一般循环队列的出入队算法都采用“求余”操作:

    head = (head + 1) % bufsize; // 入队

    tail = (tail + 1) % bufsize; // 出队

为避免计算代价高昂的“求余”操作,使内核运作更高效,input子系统的环形缓冲区采用了“求与”算法,这要求bufsize必须为2的幂,在后文中可以看到bufsize的值实际上是为64或者8的n倍,符合“求与”运算的要求。

环形缓冲区的构造以及初始化

用户层通过open()函数打开input设备节点时,调用过程如下:

open() -> sys_open() -> evdev_open()

在evdev_open()函数中完成了对evdev_client对象的构造以及初始化,每一个打开input设备节点的用户都在内核中维护了一个evdev_client对象,这些evdev_client对象通过evdev_attach_client()函数注册在evdev1对象的内核链表上。

接下来我们具体分析evdev_open()函数:

static int evdev_open(struct inode *inode, struct file *file)
{
struct evdev *evdev = container_of(inode->i_cdev, struct evdev, cdev);
// 1.计算环形缓冲区大小bufsize以及evdev_client对象大小size
unsigned int bufsize = evdev_compute_buffer_size(evdev->handle.dev);
unsigned int size = sizeof(struct evdev_client) +
bufsize * sizeof(struct input_event);
struct evdev_client *client;
int error; // 2. 分配内核空间
client = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
if (!client)
client = vzalloc(size);
if (!client)
return -ENOMEM; client->bufsize = bufsize;
spin_lock_init(&client->buffer_lock);
client->evdev = evdev; // 3. 注册到内核链表
evdev_attach_client(evdev, client); error = evdev_open_device(evdev);
if (error)
goto err_free_client; file->private_data = client;
nonseekable_open(inode, file); return 0; err_free_client:
evdev_detach_client(evdev, client);
kvfree(client);
return error;
}

在evdev_open()函数中,我们看到了evdev_client对象从构造到注册到内核链表的过程,然而它是在哪里初始化的呢?其实kzalloc()函数在分配空间的同时就通过__GFP_ZERO标志做了初始化:

static inline void *kzalloc(size_t size, gfp_t flags)
{
return kmalloc(size, flags | __GFP_ZERO);
}

生产者/消费者模型

内核驱动与用户程序就是典型的生产者/消费者模型,内核驱动产生input_event事件,然后通过input_event()函数写入环形缓冲区,用户程序通过read()函数从环形缓冲区中获取input_event事件。

环形缓冲区的生产者

内核驱动作为生产者,通过input_event()上报input_event事件时,最终调用___pass_event()函数将事件写入环形缓冲区:

static void __pass_event(struct evdev_client *client,
const struct input_event *event)
{
// 将input_event事件存入缓冲区,队头head自增指向下一个元素空间
client->buffer[client->head++] = *event;
client->head &= client->bufsize - 1; // 当队头head与队尾tail相等时,说明缓冲区空间已满
if (unlikely(client->head == client->tail)) {
/*
* This effectively "drops" all unconsumed events, leaving
* EV_SYN/SYN_DROPPED plus the newest event in the queue.
*/
client->tail = (client->head - 2) & (client->bufsize - 1); client->buffer[client->tail].time = event->time;
client->buffer[client->tail].type = EV_SYN;
client->buffer[client->tail].code = SYN_DROPPED;
client->buffer[client->tail].value = 0; client->packet_head = client->tail;
} // 当遇到EV_SYN/SYN_REPORT同步事件时,packet_head移动到队头head位置
if (event->type == EV_SYN && event->code == SYN_REPORT) {
client->packet_head = client->head;
kill_fasync(&client->fasync, SIGIO, POLL_IN);
}
}

环形缓冲区的消费者

用户程序作为消费者,通过read()函数读取input设备节点时,最终在内核调用evdev_fetch_next_event()函数从环形缓冲区中读取input_event事件:

static int evdev_fetch_next_event(struct evdev_client *client,
struct input_event *event)
{
int have_event; spin_lock_irq(&client->buffer_lock); // 判缓冲区中是否有input_event事件
have_event = client->packet_head != client->tail;
if (have_event) {
// 从缓冲区中读取一次input_event事件,队尾tail自增指向下一个元素空间
*event = client->buffer[client->tail++];
client->tail &= client->bufsize - 1;
if (client->use_wake_lock &&
client->packet_head == client->tail)
wake_unlock(&client->wake_lock);
} spin_unlock_irq(&client->buffer_lock); return have_event;
}

input子系统事件处理层(evdev)的环形缓冲区【转】的更多相关文章

  1. 【Linux高级驱动】input子系统框架

    [1.input子系统框架(drivers\input)] 如何得出某个驱动所遵循的框架?    1) 通过网络搜索    2) 自己想办法跟内核代码!         2.1 定位此驱动是属于哪种类 ...

  2. 【Linux高级驱动】input子系统框架【转】

    转自:http://www.cnblogs.com/lcw/p/3802617.html [1.input子系统框架(drivers\input)] 如何得出某个驱动所遵循的框架?    1) 通过网 ...

  3. 【驱动】input子系统全面分析

    初识linux输入子系统 linux输入子系统(linux input subsystem)从上到下由三层实现,分别为:输入子系统事件处理层(EventHandler).输入子系统核心层(InputC ...

  4. linux输入子系统(6)-input子系统介绍及结构图

    注:本系列转自: http://www.ourunix.org/post/290.html input子系统介绍         输入设备(如按键,键盘,触摸屏,鼠标,蜂鸣器等)是典型的字符设备,其一 ...

  5. input子系统详解

    一.初识linux输入子系统 linux输入子系统(linux input subsystem)从上到下由三层实现,分别为:输入子系统事件处理层(EventHandler).输入子系统核心层(Inpu ...

  6. driver: Linux设备模型之input子系统详解

    本节从整体上讲解了输入子系统的框架结构.有助于读者从整体上认识linux的输入子系统.在陷入代码分析的过程中,通过本节的知识能够找准方向,明白原理. 本节重点: 输入子系统的框架结构 各层对应内核中的 ...

  7. driver: Linux设备模型之input子系统具体解释

    本节从总体上解说了输入子系统的框架结构.有助于读者从总体上认识linux的输入子系统.在陷入代码分析的过程中,通过本节的知识可以找准方向,明确原理. 本节重点: 输入子系统的框架结构 各层相应内核中的 ...

  8. linux kernel input 子系统分析

    Linux 内核为了处理各种不同类型的的输入设备 , 比如说鼠标 , 键盘 , 操纵杆 , 触摸屏 , 设计并实现了一个对上层应用统一的试图的抽象层 , 即是Linux 输入子系统 . 输入子系统的层 ...

  9. Linux Input子系统

    先贴代码: //input.c int input_register_handler(struct input_handler *handler) { //此处省略很多代码 list_for_each ...

随机推荐

  1. 学习之响应式Web设计---一个实例

    周末闲来无事,做了一个响应式设计的例子.当然,由此并不能窥见响应式设计真谛之一斑.但,对于初次接触响应设计,对于响应式设计的概念依旧模糊不清的同学来说,或许是个启蒙! 闲语暂且不表,进入正题,这里没有 ...

  2. Maven setting配置镜像仓库

    国内Maven镜像仓库值得收藏 1.配置IDE构建的Maven存放目录(解压目录) 2.配置IDE的User setting file路径,修改setting配置文件 配置本地仓库   <!-- ...

  3. SpringBoot之oauth2.0学习之服务端配置快速上手

    现在第三方登录的例子数见不鲜.其实在这种示例当中,oauth2.0是使用比较多的一种授权登录的标准.oauth2.0也是从oauth1.0升级过来的.那么关于oauth2.0相关的概念及其原理,大家可 ...

  4. RocketMQ 集群监控以及Hello World

    RocketMQ 目前有两个版本  alibaba版本和apache版本 一.alibaba版本 tomcat部署: apache-tomcat-7.0.90.tar.gz jdk7 虚拟机redha ...

  5. 移动端自动化测试-AppiumApi接口详解

    Appium 初始化配置信息(Desired Capabilities),Desired Capabilities实际上就是一个字典,它主要用于向Appium Server提供初始化配置参数,如:想要 ...

  6. Android_TextView使用Spanable

    TextView通常用来显示普通文本,但是有时候需要对其中某些文本进行样式.事件方面的设置.Android系统通过SpannableString类来对指定文本进行相关处理,具体有以下功能: 1.Bac ...

  7. 从零开始学 Web 之 Ajax(三)Ajax 概述,快速上手

    大家好,这里是「 从零开始学 Web 系列教程 」,并在下列地址同步更新...... github:https://github.com/Daotin/Web 微信公众号:Web前端之巅 博客园:ht ...

  8. thinkphp的自动生成

    第一,在index.php里定义 define('BIND_MODULE','Admin'); //自动生成Admin目录下的结构(默认生成IndexController) define('BUILD ...

  9. [HEOI2017] 寿司餐厅 + 最大权闭合子图的总结

    Description 太长了自己看叭 点这里! Solution 先学一波什么叫最大权闭合子图. 先要明白什么是闭合子图,闭合子图就是给定一个有向图,从中选择一些点组成一个点集V.对于V中任意一个点 ...

  10. VS2012使用验证控件出现[ASP.NET]WebForms UnobtrusiveValidationMode 需要 'jquery' 的 ScriptResourceMapping。請加入 ScriptResourceMapping 命名的 jquery (區分大小寫)。的解决办法。

    方法一:在webconfig中找到 <appSettings><add key="aspnet:UseTaskFriendlySynchronizationContext& ...