BZOJ.4738.[清华集训2016]汽水(点分治 分数规划)
记\(val_i\)是每条边的边权,\(s\)是边权和,\(t\)是经过边数,\(k\)是给定的\(k\)。
在点分治的时候二分答案\(x\),设\(|\frac st-k|=x\),判断是否还能满足\(|\frac st-k|<x\)。
因为是绝对值,分两种情况:
- \(\frac st-k\geq 0\to \sum val_i-k\geq 0\),
判断是否有\(\frac st-k< x\to\quad s-t*k<t*x\to\quad\sum val_i-k<t*x\)。 - \(\frac st-k<0\to\sum val_i-k<0\),
判断是否有\(\frac st-k>-x\to\quad s-t*k>-t*x\to\quad \sum val_i-k>-t*x\)
先对每条边的边权\(val_i\)减掉一个\(k\)。
以第一种情况为例,就是求是否存在两条路径\(i,j\),使得\(s_i+s_j\geq 0\),且\(s_i+s_j<t_i*x+t_j*x\)。
把\(DFS\)得到的子树路径信息存一个三元组\((s,t,anc)\),表示一条路径的权值和、边数、这条路径来自哪棵子树(两条路径拼起来的时候不能来自同一棵子树)。
然后把所有三元组按\(s\)从小到大排序。那从小到大枚举\(i\),第一个满足\(s_i+s_j\geq 0\)的\(j\)的位置一定是单调递减的,\(j\)后面(\(i\)之前)的路径都满足。
所以维护两个\(pair\),表示两个\(s_k-t_k*x\)最小的、来自不同子树的三元组\(A,B\)。找到第一个\(s_p>0\)的位置\(p\),令\(i=p,j=p-1\),然后随着\(i\)的枚举,更新一下\(A,B\),然后\(j\)也不断往前移动顺便更新\(A,B\)就可以了。每次对于\(i\),就把\(A,B\)做\(k\),与\(i\)组合一下看是否可以满足\(s_k-t_k*x<t_i*x-s_i\)。
具体看代码吧,
有两种情况就二分\(x\)的时候,用两个\(check\)判断\(x\)(\(\frac st -k\geq 0\))和\(-x\)(\(\frac st-k<0\))是否有一个可行就行了。
都是抄的一份代码 常数差距怎么就那么大呢
//6952kb 6680ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<LL,int>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e4+5;
const LL INF=1ll<<60;
int cnt,Enum,H[N],nxt[N<<1],to[N<<1],Min,root,sz[N];
LL Ans,len[N<<1];
bool vis[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node
{
LL s; int t,anc;
inline bool operator <(const Node &x)const
{
return s<x.s;
}
}A[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline LL readll()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(LL w,int u,int v)
{
Ans=std::min(Ans,std::abs(w));//abs!!!
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, len[Enum]=w;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, len[Enum]=w;
}
void FindRoot(int x,int fa,int tot)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]]&&v!=fa)
FindRoot(v,x,tot), sz[x]+=sz[v], sz[v]>mx&&(mx=sz[v]);
mx=std::max(mx,tot-sz[x]);
if(mx<Min) Min=mx, root=x;
}
void DFS(int x,int fa,LL s,int dep,int anc)
{
A[++cnt]=(Node){s,dep,anc};
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]] && v!=fa) DFS(v,x,s+len[i],dep+1,anc);
}
inline void Upd(pr &x,pr &y,pr now)
{
if(now.first<y.first)
{
if(now.first<x.first)
{
if(now.second!=x.second) y=x;
x=now;
}
else if(now.second!=x.second) y=now;
}
}
bool Check1(LL k,int pos,int cnt)
{
pr x(INF,0),y(INF,0); A[0].s=-INF;
for(int i=pos,j=pos-1; i<=cnt; ++i)
{
while(A[i].s+A[j].s>=0) Upd(x,y,mp(A[j].s-k*A[j].t,A[j].anc)), --j;
if((x.second==A[i].anc?y.first:x.first)+A[i].s<k*A[i].t) return 1;
Upd(x,y,mp(A[i].s-k*A[i].t,A[i].anc));
}
return 0;
}
bool Check2(LL k,int pos,int cnt)
{//s>-tx -> -s<tx
pr x(INF,0),y(INF,0); A[cnt+1].s=INF;
for(int i=pos-1,j=pos; i; --i)
{
while(A[i].s+A[j].s<0) Upd(x,y,mp(-A[j].s-k*A[j].t,A[j].anc)), ++j;
if((x.second==A[i].anc?y.first:x.first)-A[i].s<k*A[i].t) return 1;
Upd(x,y,mp(-A[i].s-k*A[i].t,A[i].anc));
}
return 0;
}
void Solve(int x)
{
vis[x]=1, A[cnt=1]=(Node){0,0,0};
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]]) DFS(v,x,len[i],1,v);
int p=1; std::sort(A+1,A+1+cnt), A[cnt+1].s=0;
while(A[p].s<0) ++p;
LL l=1,r=Ans,mid;//判断是否存在比Ans小的答案 范围是1~Ans!(UOJ数据真心强=-=)
while(l<=r)
if(Check1(mid=l+r>>1,p,cnt)||Check2(mid,p,cnt)) Ans=mid-1, r=mid-1;
else l=mid+1;
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]]) Min=N, FindRoot(v,x,sz[v]), Solve(root);
}
int main()
{
const int n=read(); const LL K=readll();//readll!!
Ans=INF;//在这 不能在Solve()前面 = =
for(int i=1; i<n; ++i) AE(readll()-K,read(),read());
Min=N, FindRoot(1,1,n), Solve(root);
printf("%lld\n",Ans);
return 0;
}
BZOJ.4738.[清华集训2016]汽水(点分治 分数规划)的更多相关文章
- [UOJ#276][清华集训2016]汽水[分数规划+点分治]
题意 给定一棵 \(n\) 个点的树,给定 \(k\) ,求 \(|\frac{\sum w(路径长度)}{t(路径边数)}-k|\)的最小值. \(n\leq 5\times 10^5,k\leq ...
- UOJ276 [清华集训2016] 汽水 【二分答案】【点分治】【树状数组】
题目分析: 这种乱七八糟的题目一看就是点分治,答案有单调性,所以还可以二分答案. 我们每次二分的时候考虑答案会不会大于等于某个值,注意到系数$k$是无意义的,因为我们可以通过转化使得$k=0$. 合并 ...
- 并不对劲的uoj276. [清华集训2016]汽水
想要很对劲的讲解,请点击这里 题目大意 有一棵\(n\)(\(n\leq 50000\))个节点的树,有边权 求一条路径使该路径的边权平均值最接近给出的一个数\(k\) 输出边权平均值下取整的整数部分 ...
- [UOJ#276]【清华集训2016】汽水
[UOJ#276][清华集训2016]汽水 试题描述 牛牛来到了一个盛产汽水的国度旅行. 这个国度的地图上有 \(n\) 个城市,这些城市之间用 \(n−1\) 条道路连接,任意两个城市之间,都存在一 ...
- bzoj 4736 /uoj274【清华集训2016】温暖会指引我们前行 lct
[清华集训2016]温暖会指引我们前行 统计 描述 提交 自定义测试 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了 ...
- UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]
#274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...
- UOJ_274_[清华集训2016]温暖会指引我们前行_LCT
UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...
- UOJ 275. 【清华集训2016】组合数问题
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...
- UOJ #269. 【清华集训2016】如何优雅地求和
UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...
随机推荐
- .tar.xz文件的解压方法
废话不多说: 直接看 方法一: tar -xvJf ***.tar.gz 方法二: 先减压成 .tar 格式的文件, 再解压 .tar #xz是一个工具, 系统中没有安装,需要下载 xz -d *** ...
- 20165206 2017-2018-2 《Java程序设计》第9周学习总结
20165206 2017-2018-2 <Java程序设计>第9周学习总结 教材学习内容总结 URL类:URL类是java.net包中的一个重要的类,使用URL创建对象的应用程序称为客户 ...
- Linux桌面环境安装matlab并创建快捷方式
安装matlab sudo mkdir -p /mnt/matlab sudo mount -t auto -o loop /home/chris/Downloads/2016b_linux/R201 ...
- Redis都有哪些数据类型
string 这是最基本的类型了,就是普通的set和get,做简单的kv缓存 hash 这个是类似map的一种结构,这个一般就是可以将结构化的数据,比如一个对象(前提是这个对象没嵌套其他的对象)给缓存 ...
- [转] Web前端开发工程师常用技术网站整理
1.常用工具相关 有道云笔记 http://note.youdao.com/signIn/index.html 36镇-最好用的共享收藏夹 http://www.36zhen.com/ 浏览器同步测试 ...
- C# 文件拖放到此程序的操作
问题描述: 怎么写代码可以实现指定类型的文件通过鼠标拖放显示在程序的文本框中,如:选中3个文件(3个文件的格式有MP3和wma)拖到程序,程序的文本框显示这三个文件的路径...解决代码: thi ...
- 如何确定系统上的CPU插槽数量
环境 Red Hat Enterprise Linux 7 Red Hat Enterprise Linux 6 Red Hat Enterprise Linux 5 Red Hat Enterpri ...
- net core体系-web应用程序-4net core2.0大白话带你入门-10asp.net core session的使用
asp.net core session的使用 Session介绍 本文假设读者已经了解Session的概念和作用,并且在传统的.net framework平台上使用过. Asp.net core ...
- 关于mac的一些常用操作记录
之前记录过一个关于mac远程连接window机,实现共享文件的记录,今天记录一些常用的操作,会持续更新. 1.谷歌浏览器 f12的操作 command+option+i 打开调试面板 2.打开指定位置 ...
- 使用Phar来打包发布PHP程序
简单来说,Phar就是把Java界的jar概念移植到了PHP界. Phar可以将一组PHP文件进行打包,还可以创建默认执行的stub(或者叫做 bootstrap loader),Phar可以选择是否 ...