时间限制:1000ms
单点时限:1000ms
内存限制:256MB

描述

现在有一棵有N个带权顶点的树,顶点编号为1,2,...,N。我们定义一条路径的次小(最小)权为它经过的所有顶点(包括起点和终点)中权值次小(最小)顶点的权值。现在给定常数c,你需要求出:存在多少个使得u<v的顶点组(u,v),满足从u到v的最短路的次小权恰为c但最小权不为c。
输入

第一行有两个数N和c。(1<=n<=100000)

第二行N个数,依次表示每个顶点的权值。

接下来N-1行,每行两个数,代表这棵树的一条边所连接的两个顶点的编号。

我们保证输入中的数都在int以内。
输出

一个数,为答案。
样例输入

8 2
    2 2 3 3 1 2 3 2
    1 2
    3 2
    3 8
    4 2
    5 2
    5 6
    6 7

样例输出

17


Solution

为了方便, 把我们要考虑的树记作$T=(V, E)$, 用$w[u]$表示节点$u$ ($u\in V$) 的权值.

先考虑一个简化的问题:

求最小权小于$c$且次小权不小于$c$的路径$(u, v)$的数目.

为了解决这个问题, 我们考虑如下的添边过程:

我们考虑一个动态的图$S(V, E'), E'\subseteq E$.

从$S=(V, \emptyset)$开始, 先把所有满足$w[u]\ge c \land w[v] \ge c$的边$(u, v)$加到$S$中,

然后考虑满足

\[w[u]<c \land w[v]\ge c \lor w[u]\ge c \land w[v] <c\]

的边$(u, v)$, 不失一般性, 不妨设 $w[u]<c, w[v]\ge c$.

我们先把$u$固定为$u_0$, 考虑将所有符合上述条件的边$\{(u_0, v)\}$加到$s$中将能获得多少满足条件的路径.

显然这些满足条件的路径上的最小权就是$w[u_0]$.

(未完待续...)

(无力写了, 先把代码贴上)


UPD

前面写得太罗嗦了, 结果现在自己都看不大懂了. 其实做法一句话就能说清楚:

最小权小于$c$, 次小权不小于$c$的路径数 $-$ 最小权小于$c$, 次小权大于$c$的路径数

Implementation

 #include <bits/stdc++.h>
using namespace std;
using LL=long long;
const int N{<<}; int a[N]; struct edge{
int u, v;
void read(){
cin>>u>>v;
}
}e[N]; struct DSU{
int par[N], size[N];
int n;
DSU(int n):n(n){}
void init(){
for(int i=; i<=n; i++){
par[i]=i;
size[i]=;
}
}
int find(int x){
return x==par[x]?x:par[x]=find(par[x]);
}
void unite(int x, int y){
x=find(x), y=find(y);
if(x!=y) par[x]=y, size[y]+=size[x];
}
}; vector<int> f[N]; void prep(DSU &b, int n, int c){
b.init();
for(int i=; i<=n; i++) f[i].clear();
for(int i=; i<n; i++){
int u=e[i].u, v=e[i].v;
if(a[u]>=c && a[v]>=c){
b.unite(u, v);
}
}
} int main(){
int n, c;
cin>>n>>c;
DSU b(n); for(int i=; i<=n; i++)
cin>>a[i];
for(int i=; i<n; i++)
e[i].read(); LL res=; prep(b, n, c); for(int i=; i<n; i++){
int u=e[i].u, v=e[i].v;
if(a[u]<c ^ a[v]<c){ //tricky
// cout<<u<<' '<<v<<endl;
if(a[v]<c) swap(u, v);
int rv=b.find(v);
// res+=LL(b.size[u])*LL(b.size[v]);
// if(ru!=rv)
f[u].push_back(b.size[rv]);
}
} for(int i=; i<=n; i++){
// if(f[i].size()) cout<<"#"<<i<<endl;
LL sum=, t=;
for(auto &x: f[i])
sum+=x;
for(auto &x: f[i]) t+=LL(x)*(sum-x);
res+=t>>;
res+=sum;
} prep(b, n, c+); for(int i=; i<n; i++){
int u=e[i].u, v=e[i].v;
if(a[u]<c && a[v]>c || a[u]>c && a[v]<c){ //tricky
if(a[v]<c) swap(u, v);
int rv=b.find(v);
// res+=LL(b.size[u])*LL(b.size[v]);
f[u].push_back(b.size[rv]);
}
} for(int i=; i<=n; i++){
LL sum=, t=;
for(auto &x: f[i])
sum+=x;
for(auto &x: f[i]) t+=LL(x)*(sum-x);
res-=t>>, res-=sum;
} cout<<res<<endl;
}

hihocoder #1112 树上的好路径的更多相关文章

  1. Codefroces Gym 100781A(树上最长路径)

    http://codeforces.com/gym/100781/attachments 题意:有N个点,M条边,问对两两之间的树添加一条边之后,让整棵大树最远的点对之间的距离最近,问这个最近距离是多 ...

  2. Codeforces Round #526 D - The Fair Nut and the Best Path /// 树上两点间路径花费

    题目大意: 给定一棵树 树上每个点有对应的点权 树上每条边有对应的边权 经过一个点可得到点权 经过一条边必须花费边权 即从u到v 最终得分=u的点权-u到v的边权+v的点权 求树上一条路径使得得分最大 ...

  3. 【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)

    Walking Race   Description flymouse's sister wc is very capable at sports and her favorite event is ...

  4. ●hihocoder #1394 网络流四·最小路径覆盖

    题链: http://hihocoder.com/problemset/problem/1394 题解: 有向图最小路径覆盖:最少的路径条数不重不漏的覆盖所有点. 注意到在任意一个最小路径覆盖的方案下 ...

  5. hihoCoder 1394 : 网络流四·最小路径覆盖

    题目链接:https://hihocoder.com/problemset/problem/1394 题目说是网络流,但是其实就是求有向无环图的最小路径覆盖. 不会网络流,只好用二分匹配了. 把每个点 ...

  6. hihocoder 1676 树上等差数列 黑科技树形dp

    #1676 : 树上的等差数列 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一棵包含N个节点的无根树,节点编号1~N.其中每个节点都具有一个权值,第i个节点的权值 ...

  7. hihocoder #1394 : 网络流四·最小路径覆盖(最小路径覆盖)

    #1394 : 网络流四·最小路径覆盖 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 国庆期间正是旅游和游玩的高峰期. 小Hi和小Ho的学习小组为了研究课题,决定趁此机 ...

  8. HDU 6043:Colorful Tree(树上统计所有路径总颜色数)***

    题目链接 题意 给出一棵有n个结点的树,每个结点有一个颜色,问在这棵树的所有路径中,每条路径的颜色数求和是多少. 思路 求每种颜色的贡献可以转化为总的和减去每种颜色在哪些路径上没有出现的贡献,一个颜色 ...

  9. SPOJ 1825 经过不超过K个黑点的树上最长路径 点分治

    每一次枚举到重心 按子树中的黑点数SORT一下 启发式合并 #include<cstdio> #include<cstring> #include<algorithm&g ...

随机推荐

  1. Android Studio单元测试入门

    Android Studio单元测试入门 通常在开发Android app的时候经常会写一些小函数并验证它是否运行正确,通常做法我们是把这个函数放到某个界面(Activity上)执行一下,运行整个工程 ...

  2. unity3d 音频无缝循环

    在我做赛车漂移的时候,漂移的声音断断续续的,搞得我很郁闷 大家可以随便找个音效然后循环播放去仔细听 你会发现当音效播放完成一次之后循环播放第二次时会停顿一下 我做赛车漂移如果中途停顿了体验是非常不好的 ...

  3. Scala入门之Array

    /** * 大数据技术是数据的集合以及对数据集合的操作技术的统称,具体来说: * 1,数据集合:会涉及数据的搜集.存储等,搜集会有很多技术,存储现在比较经典的是使用Hadoop,也有很多情况使用Kaf ...

  4. GitHub 上一份很受欢迎的前端代码优化指南-强烈推荐收藏

    看到一份很受欢迎的前端代码指南,根据自己的理解进行了翻译,但能力有限,对一些JS代码理解不了,如有错误,望斧正. HTML 语义化标签 HTML5 提供了很多语义化元素,更好地帮助描述内容.希望你能从 ...

  5. JAVA多线程(二)

    Synchronized的使用: (一)synchronized:  Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一时刻最多只有一个线程执行该段代码. 当某个方法或者代 ...

  6. 为Mac Terminal设置代理

    参考链接:http://tz101.github.io/new-mac-os-x-yosemite-10-10-Xcode-Brew-Shadowsocks-Proxychains/ https:// ...

  7. A+B

    Problem Description Calculate A + B. Input Each line will contain two integers A and B. Process to e ...

  8. JVM学习之jstat使用方法

    Jstat是JDK自带的一个轻量级工具,主要用JVM内建的指令对java应用程序的资源和性能进行实时的监控. 基本语法 jstat <option> [-t] [-h] <pid&g ...

  9. 选项卡js

    趁着公司不忙,抓紧充充电,开始可能会写的不好,但是每写一个都是一点进步,哈哈,加油 用js实现选项卡切换 1.获取元素 2.初始状态 3.通过循环清空元素状态 4.点击操作以及对应的内容切换 5.自定 ...

  10. ActiveMQ(七)_伪集群和主从高可用使用

      一.本文目的         介绍如何在同一台虚拟机上搭建高可用的Activemq服务,集群数量包含3个Activemq,当Activemq可用数>=2时,整个集群可用.         本 ...