题目链接

题意:给出一个树形结构,求P个节点的子树最少要去掉几条边

分析:DP[root][j] 表示 以第 root 个为根节点, 包含j 个节点需要去掉几条边。那么对于 root 这个根节点来说, 要么选择 他的一个 儿子 k, 要么不选择, 如果选择 dp[root][j] = min( dp[k][i] + dp[root][j - i] ), k为root的子节点, 其中  0 < i < j; 如果不选择的话,就去掉root 和 k之间连线,dp[root][j] = dp[root] [j] + 1;

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cstdio>
using namespace std;
const int Max = ;
const int INF = 0x3f3f3f3f;
vector<int> son[Max];
int n, p;
int indegree[Max];
int dp[Max][Max];
void dfs(int root)
{
int Size = son[root].size();
for (int i = ; i <= p; i++)
dp[root][i] = INF;
dp[root][] = ; //全都设为0,对于叶子节点来说就是0
for (int i = ; i < Size; i++)
{
int u = son[root][i];
dfs(u);
int temp;
for (int j = p; j >= ; j--)
{
temp = dp[root][j] + ; // 不选择u这个子节点,那么就+1
for (int k = ; k < j; k++) // 枚举root的节点个数,所以第一层 i 要从p开始枚举,因为这里要用到 小的,保证小的是上一个状态
{
temp = min(temp, dp[root][k] + dp[u][j - k]);
}
dp[root][j] = temp;
}
}
} int solve(int root)
{
dfs(root);
int ans = dp[root][p]; // 这个子树可能以root为根
for (int i = ; i <= n; i++) // 也可以不以root为根
ans = min(ans, dp[i][p] + );
return ans; }
int main()
{
while (scanf("%d%d", &n, &p) != EOF)
{
for (int i = ; i <= n; i++)
son[i].clear();
memset(indegree, , sizeof(indegree));
int I, J, root;
for (int i = ; i < n; i++)
{
scanf("%d%d", &I, &J);
son[I].push_back(J);
indegree[J]++;
}
for (int i = ; i <= n; i++)
{
if (!indegree[i]) // 找根节点
{
root = i;
break;
}
} printf("%d\n", solve(root));
}
return ;
}

POJ 1947Rebuilding Roads(树形DP + 01背包)的更多相关文章

  1. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

  2. poj 2923 状压dp+01背包

    好牛b的思路 题意:一系列物品,用二辆车运送,求运送完所需的最小次数,两辆车必须一起走 解法为状态压缩DP+背包,本题的解题思路是先枚举选择若干个时的状态,总状态量为1<<n,判断这些状态 ...

  3. hihoCoder#1055 : 刷油漆 (树形DP+01背包)

    题目大意:给一棵带点权的树,现在要从根节点开始选出m个连通的节点,使总权值最大. 题目分析:定义状态dp(u,m)表示在以u为根的子树从根节点开始选出m个点连通的最大总权值,则dp(u,m)=max( ...

  4. HDU1561:The more, The Better(树形DP+01背包)

    Problem Description ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位置原因,有 ...

  5. hdu 1561【树形dp+01背包】

    http://acm.hdu.edu.cn/showproblem.php?pid=1561 很容易想到如果是要攻克v城需要先攻克u城的话,可以建u到v的边.但是如果能够直接攻克u城呢?无边可建,这样 ...

  6. 树形DP +01背包(HDU 1011)

    题意:有n个房间,有n-1条道路连接着n个房间,每个房间都有若干个野怪和一定的能量值,有m个士兵从1房间入口进去,到达每个房间必须要留下若干士兵杀死所有的野怪,然后其他人继续走,(一个士兵可以杀死20 ...

  7. HDU 1561 The more, The Better(树形DP+01背包)

    The more, The Better Time Limit : 6000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other ...

  8. POJ 2184 Cow Exhibition【01背包+负数(经典)】

    POJ-2184 [题意]: 有n头牛,每头牛有自己的聪明值和幽默值,选出几头牛使得选出牛的聪明值总和大于0.幽默值总和大于0,求聪明值和幽默值总和相加最大为多少. [分析]:变种的01背包,可以把幽 ...

  9. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

随机推荐

  1. Python3 windows如何安装模块 setuptools

    下载的module解压后里面有setup.py文件,如果打开setup.py文件里面有这段代码: from setuptools import setup ... setup( ... 这种的都需要调 ...

  2. 支持向量机通俗导论(理解SVM的三层境界)

    原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算 ...

  3. SD卡状态广播

    SD状态发生改变的时候会对外发送广播.SD卡的状态一般有挂载.未挂载和无SD卡. 清单文件 一个广播接受者可以接受多条广播.这里在意图过滤器中添加是data属性是因为广播也需要进行匹配的.对方发送的广 ...

  4. C#套接字和windowsAPI套接字

    C#服务器端 第一步:用指定的端口号和服务器的ip建立一个EndPoint对像:第二步:建立一个Socket对像:第三步:用socket对像的Bind()方法绑定EndPoint:第四步:用socke ...

  5. Beta版本冲刺———第二天

    会议照片: 项目燃尽图: 1.项目进展: 昨天的困难:分数排行榜的设计 今天解决的进度:完成了界面优化以及建立新的排行榜选项卡界面. 明天要做的事情:分数排行榜的功能设计 2.每个人每天做的事情 郭怡 ...

  6. context:component-scan扫描使用的use-default-filters

    如下方式可以成功扫描到@Controller注解的Bean,不会扫描@Service/@Repository的Bean. <context:component-scan base-package ...

  7. [转]VirtualBox – Error In supR3HardenedWinReSpawn 问题解决办法

    原文地址:http://chenpeng.info/html/3510 Genymotion 模拟器安装好虚拟机后,启动时报错: —————————VirtualBox – Error In supR ...

  8. Dubbo系列(2)_RPC介绍

    一.本文目的         主要介绍RPC的一些概念和应用. 二.为什么要介绍RPC    DUBBO是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,是阿里巴巴SOA服务化治 ...

  9. PHP输出一个指定范围内的随机数

    <?php echo mt_rand(5, 15); ?>

  10. C#-WinForm-打开其他窗体的三种方式-Show()、设置Owner()、ShowDialog()

    打开其他窗体的三种方式 Show - 例如登入界面进入主页面,直接将主页面展示出来,两个窗体互不影响 public partial class Form1 : Form { public Form1( ...