本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

  现在我们有一个长度为n的整数序列A。但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列。
但是不希望改变过多的数,也不希望改变的幅度太大。

Input

  第一行包含一个数n,接下来n个整数按顺序描述每一项的键值。n<=35000,保证所有数列是随机的

Output

  第一行一个整数表示最少需要改变多少个数。 第二行一个整数,表示在改变的数最少的情况下,每个数改变
的绝对值之和的最小值。

Sample Input

4
5 2 3 5

Sample Output

1
4
 
 
正解:DP
解题报告:
  考虑补集转换,题目转换为:最大化不修改的点。
  对于任意的i,j(j<i),如果可以通过修改中间的j-i+1个数来使得[j,i]满足要求,必要条件是a[i]-a[j]>=i-j,不妨设b[i]=a[i]-i,则条件变为b[i]>=b[j],至此第一问最长不降子序列可做。
  第二问,不妨设g[i]为1到i的答案,则
  $${g[i]=min(g[j]+cost[j+1,i])}$$
  j需要满足:j可以转移到i且$${f[j]+1=f[i]}$$
  cost[j,i]表示修改[j,i]的最小代价
  结论:必定存在点t使得[j,t]都为bj,[t+1,i]都为bi。证明从略
  只需每次找到一个分割点,暴力枚举即可。细节较多。
 
 //It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
using namespace std;
typedef long long LL;
const int MAXN = ;
const LL inf = (1LL<<);
int n;
LL a[MAXN],g[MAXN],cost1[MAXN],cost2[MAXN],b[MAXN],c[MAXN],ans,f[MAXN];
vector<int>w[MAXN];
inline int getint(){
int w=,q=; char c=getchar(); while((c<''||c>'') && c!='-') c=getchar();
if(c=='-') q=,c=getchar(); while (c>=''&&c<='') w=w*+c-'',c=getchar(); return q?-w:w;
}
inline int find(LL x){ int l=,r=n,pos=,mid; while(l<=r) { mid=(l+r)>>; if(c[mid]<=x) l=mid+,pos=mid; else r=mid-; } return pos; }
inline void work(){
n=getint(); for(int i=;i<=n;i++) a[i]=getint(),b[i]=a[i]-i; a[++n]=inf; b[n]=a[n]-n; for(int i=;i<=n;i++) c[i]=g[i]=inf;
for(int i=;i<=n;i++) f[i]=find(b[i])+,c[f[i]]=min(c[f[i]],b[i]); for(int i=;i<=n;i++) ans=max(ans,f[i]);
printf("%lld\n",n-ans); w[].push_back(); int from; LL now; b[]=-inf;//!!!
for(int i=;i<=n;i++) {
from=f[i]-;
for(int j=,size=w[from].size();j<size;j++) {
int v=w[from][j]; if(b[i]<b[v]) continue;//转移不到
cost1[v-]=cost2[v-]=;
for(int k=v;k<=i;k++) cost1[k]=abs(b[k]-b[v]),cost2[k]=abs(b[k]-b[i]);
for(int k=v+;k<=i;k++) cost1[k]+=cost1[k-],cost2[k]+=cost2[k-];
for(int k=v;k<=i;k++) {
now=cost1[k]-cost1[v]+cost2[i]-cost2[k];
g[i]=min(g[i],g[v]+now);
}
}
w[f[i]].push_back(i);
}
printf("%lld",g[n]);
} int main()
{
work();
return ;
}

BZOJ1049 [HAOI2006]数字序列0的更多相关文章

  1. 洛谷P2501 bzoj1049 [HAOI2006]数字序列

    题目链接 bzoj 洛谷 题解 第一问: 假如 \(i < j\) 如果 \(j\)能从\(i\)转移过来 显然中间空隙必须足够 例如:\(50\) \(53\) \(53\) \(52\) 就 ...

  2. BZOJ1049: [HAOI2006]数字序列

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1049 题解: ydc的题解:http://pan.baidu.com/share/link?u ...

  3. BZOJ1049:[HAOI2006]数字序列(DP)

    Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列. 但是不希望改变过多的数,也不希望改变的幅度太大. Input 第一行包含一个 ...

  4. 【BZOJ1049】 [HAOI2006]数字序列

    BZOJ1049 [HAOI2006]数字序列 dp好题? 第一问 第一问我会做!令\(b_i=a_i-i\),求一个最长不下降子序列. \(n-ans\)就是最终的答案. 第二问 好难啊.不会.挖坑 ...

  5. bzoj 1049 [HAOI2006]数字序列

    [bzoj1049][HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不 ...

  6. 洛谷 P2501 [HAOI2006]数字序列 解题报告

    P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...

  7. 2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS)

    2021.12.06 P2501 [HAOI2006]数字序列(动态规划+LIS) https://www.luogu.com.cn/problem/P2501 题意: 现在我们有一个长度为 n 的整 ...

  8. 【BZOJ 1049】 1049: [HAOI2006]数字序列 (LIS+动态规划)

    1049: [HAOI2006]数字序列 Description 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变 ...

  9. 【BZOJ1049】【Luogu P2501】 [HAOI2006]数字序列 DP,结论,LIS

    很有(\(bu\))质(\(hui\))量(\(xie\))的一个题目. 第一问:求最少改变几个数能把一个随机序列变成单调上升序列. \(Solution:\)似乎是一个结论?如果两个数\(A_i\) ...

随机推荐

  1. 未能正确加载包“Microsoft.Data.Entity.Design.Package.MicrosoftDataEntityDesignPackage

    本文出处:http://blog.sina.com.cn/s/blog_6fe3efa301016i64.html vs 2005 ,vs 2008, vs 2010,安装后有时出现这个错误(我的机器 ...

  2. &11,散列表

    #1,是什么? 散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个 ...

  3. JAVA CDI 学习(4) - @Alternative/@Default/@Any & Extension

    前面几节学习到的CDI内容,基本上都是hard-code,以硬编码的方式在代码里指定注入类型,这并非依赖注入的本意,依赖注入的优势之一在于“解耦”,这一节我们将学习如何利用配置来动态注入的类型及属性初 ...

  4. Hibernate3.3.2 手动配置annotation环境

    简单记录Hibernate3.3.2如何快速配置环境 一.下载hibernate-distribution-3.3.2.GA-dist.zip文件,建立User libraries. 打开window ...

  5. Use Dapper ORM With ASP.NET Core

    Dapper.NET is not just another ORM tool, it's considered as the king of ORM. Because it's fast, easy ...

  6. 给大一的学弟学妹们培训java web的后台开发讨论班计划

    蓝旭工作室5月大一讨论班课程计划   课时 讨论班性质 讨论班名称 主要内容 主讲人   第一讲 先导课 后台开发工具的使用与MySQL数据库基础 后台开发工具的基本使用方法与工程的创建,MySQL数 ...

  7. SQL基础之GROUPING

    1.grouping sets 记得前几天第一次接触grouping sets时,笔者的感觉是一脸懵逼. 后来一不小心看到msdn上对grouping sets的说明,顿时豁然开朗,其实groupin ...

  8. Hadoop简单安装配置

    Hadoop开始设计以Linux平台为运行目标,所以这里推荐在Linux发行版比如Ubuntu进行安装,目前已经有Hadoop for Windows出来,大家自行搜下文章. Hadoop运行模式分为 ...

  9. C# 控制台程序实现 Ctrl + V 粘贴功能

    代码主要分为两部分,首先调用系统API注册剪切板相关的事件,然后监控用户的按键操作.完整代码如下: class ClipBoard { [DllImport("user32.dll" ...

  10. mysql性能优化-慢查询分析、优化索引和配置

    一.优化概述 二.查询与索引优化分析 1性能瓶颈定位 Show命令 慢查询日志 explain分析查询 profiling分析查询 2索引及查询优化 三.配置优化 1)      max_connec ...