bzoj 1005 1211 prufer序列总结
两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法
这里构建无根树要用到的是prufer序列的知识
先很无耻地抄袭了一段百度百科中的prufer序列的知识:
将树转化成Prufer数列的方法

以右边的树为例子,首先在所有叶子节点中编号最小的点是2,和它相邻的点的编号是3,将3加入序列并删除编号为2的点。接下来删除的点是4,5被加入序列,然后删除5,1被加入序列,1被删除,3被加入序列,此时原图仅剩两个点(即3和6),Prufer序列构建完成,为{3,5,1,3}
将Prufer数列转化成树的方法
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
#define pii pair<int,int>
int n , w[] , num[];
vector<pii> v[]; void solve(int m)
{
if(m==) return;
int tmp = m;
for(int i= ; i<=m ; i++){
if(m%i==){
int cnt = ;
while(m%i==){
m/=i;
cnt++;
}
v[tmp].push_back(make_pair(i , cnt));
}
}
if(m>) v[tmp].push_back(make_pair(m , ));
// for(int i=0 ; i<v[tmp].size() ; i++) cout<<v[tmp][i].first<<" "<<v[tmp][i].second<<endl;
}
void init()
{
for(int i= ; i<= ; i++) solve(i);
}
void update(int k , int flag)
{
for(int i= ; i<v[k].size() ; i++){
pii u=v[k][i];
num[u.first]+=u.second*flag;
}
}
void mul(long long &ans , int k , int tim)
{
for(int i= ; i<=tim ; i++) ans=ans*k;
}
int main()
{
// freopen("Sweet.in" , "r" , stdin);
init();
while(~scanf("%d" , &n)){
memset(num , , sizeof(num));
int sum= , flag=true;
for(int i= ; i<=n ; i++){
scanf("%d" , &w[i]);
if(w[i]==) flag = false;
sum+=w[i]-;
for(int j= ; j<=w[i]- ; j++) update(j , -);
}
if(n== && w[]==){
cout<<<<endl;
continue;
}
if(sum!=n- || n== || flag==false){
cout<<<<endl;
continue;
}
for(int i= ; i<=n- ; i++) update(i , );
long long ans = ;
for(int i= ; i<=n- ; i++){
if(num[i]) mul(ans , i , num[i]);
}
cout<<ans<<endl;
}
return ;
}
bzoj1211
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define N 1005
int n , a[N] , cnt[N];
int ans[N*] , l1;
int mul[N] , l2;
int tmp[N*]; void fenjie(int x , int flag)
{
for(int i= ; i*i<=x ; i++){
while(x%i==){
cnt[i]+=flag;
x/=i;
}
}
if(x>) cnt[x]+=flag;
} void solveC(int a , int b) //C(n-2 , sum)
{
for(int i= ; i<=b ; i++) fenjie(i , -);
for(int i=a ; i>a-b ; i--) fenjie(i , );
} void change(int x)
{
l2 = ;
while(x){
mul[l2++] = x%;
x/=;
}
} void cal()
{
memset(tmp , , sizeof(tmp));
int len = ;
for(int i= ; i<l2 ; i++){
for(int j= ; j<l1 ; j++){
int cur = i+j;
len = max(len , cur+);
tmp[cur] += ans[j]*mul[i];
}
}
for(int i= ; i<len ; i++){
if(tmp[i]>=){
len= max(len , i+);
tmp[i+] += tmp[i]/;
tmp[i] %= ;
}
}
for(int i= ; i<len ; i++) ans[i] = tmp[i] , l1 = len;
} void print()
{
for(int i=l1- ; i>= ; i--) printf("%d" , ans[i]);
printf("\n");
}
int main()
{
// freopen("a.in" , "r" , stdin);
while(~scanf("%d" , &n)){
memset(cnt , , sizeof(cnt));
int w = , sum = ;
bool flag = true;
for(int i= ; i<=n ; i++){
scanf("%d" , &a[i]);
if(a[i]==) flag=false;
if(a[i]<) w++;
else{
sum+=a[i]-;
for(int j= ; j<=a[i]- ; j++) fenjie(j , -);
}
}
if(n== && a[]==){
cout<<<<endl;
continue;
}
solveC(n- , sum);
if(n== || sum>n- || flag==false) cout<<<<endl;
else{
for(int i= ; i<=sum ; i++) fenjie(i, );
int cnt = n--sum;
for(int i= ; i<=cnt ; i++) fenjie(w , );
}
// for(int i=1 ; i<=10 ; i++) cnt[i]++;
ans[] = , l1=;
for(int i= ; i<=n ; i++){
if(cnt[i]){
change(i);
for(int j= ; j<=cnt[i] ; j++){
cal();
}
}
}
print();
}
return ;
}
bzoj1005
bzoj 1005 1211 prufer序列总结的更多相关文章
- [HNOI2004]树的计数 BZOJ 1211 prufer序列
题目描述 输入输出格式 输入格式: 输入文件第一行是一个正整数n,表示树有n个结点.第二行有n个数,第i个数表示di,即树的第i个结点的度数.其中1<=n<=150,输入数据保证满足条件的 ...
- [BZOJ1005][HNOI2008]明明的烦恼 数学+prufer序列+高精度
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- [HNOI2008][bzoj 1005]明明的烦恼(prufer序列)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7121 Solved: 2816[Submit][Stat ...
- BZOJ 1211 HNOI2004 树的计数 Prufer序列
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...
- BZOJ 1005 明明的烦恼(prufer序列+高精度)
有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...
- BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度
题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...
- BZOJ 1005 prufer序列
给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
随机推荐
- 左 or 右
背景: 掌握的知识:C++.MFC.设计模式.STL,熟悉windows网络编程,了解COM组件但是不精. 近期辞职找工作,发现windows下的C++开发职位很少.linux和移动端开发职位多,但是 ...
- getopt解析命令行参数一例:汇集多个服务器的日志
高效工作的一个诀窍就是尽可能自动化, 简便化. 比如, 公司里, 要搜索多个集群下的应用日志来排查问题, 需要使用 pssh: pssh -i -h api_hangzhou.iplist " ...
- [转]网络诊断工具:MTR
MTR是Linux平台上一款非常好用的网络诊断工具,集成了traceroute.ping.nslookup的功能,用于诊断网络状态非常有用.能按要求对路由中所有节点进行批量测试 第一列(Host):I ...
- IOS Xcode7 新建PCH文件
第一步:新建文件找到iOS中的Othere点击PCH File 点击Next 第二步:修改文件名为当前工程名(一般与工程名同名),勾选Targets,点击create创建 第三步:如图选中红框中的路径 ...
- NodeJS的安装
1. 进入官网下载对应版本的nodejs(我选择的是32位的window7版本x86) 2. 默认路径可修改 3. install就可以安装在cmd中输入path查看路径(我的是E:\compan ...
- mybatis代码生成(generator工具生成代码)
generator工具生成代码 下载地址 http://pan.baidu.com/s/1bY8C0I
- Codeforces Round #374 (div.2)遗憾题合集
C.Journey 读错题目了...不是无向图,结果建错图了(喵第4样例是变成无向就会有环的那种图) 并且这题因为要求路径点尽可能多 其实可以规约为限定路径长的拓扑排序,不一定要用最短路做 #prag ...
- 使用异步js解决模态窗口切换的办法
核心代码 js ="setTimeout(function(){document.getElementsByTagName('Button')[3].click()},100);" ...
- linux centos 6.5 运行MySQL Workbench 6.0找不到 libmysqlclient.so.16和libmysqlclient_r.so.16
找到已安装mysql/lib目录下有类似文件: -rw-r--r-- root root 12月 : libmysqlclient.a lrwxrwxrwx root root 12月 : libmy ...
- crontab 的使用
1. 创建一个文件 mycrontab 2. 将此文件运用到系统的定时器中 crontab mycrontab 3. crontab -e (或直接编辑 mycrontab, 但 ...