ACM 红黑树
红黑树
- 描述
-
什么是红黑树呢?顾名思义,跟枣树类似,红黑树是一种叶子是黑色果子是红色的树。。。
当然,这个是我说的。。。
《算法导论》上可不是这么说的:
如果一个二叉查找树满足下面的红黑性质,那么则为一个红黑树。
1)每个节点或是红的,或者是黑的。
2)每个叶子节点(NIL)是黑色的
3)如果一个节点是红色的,那么他的两个儿子都是黑的。
4)根节点是黑色的。
5)对于每个节点,从该节点到子孙节点的所有路径上包含相同数目的黑色节点。
我们在整个过程中会用到这些性质,当然,为了公平起见,其实即使你不知道这些性质,这个题目也是可以完成的(为什么不早说。。。。)。在红黑树的各种操作中,其核心操作被称为旋转,那么什么是旋转呢,我们来看一个例子:
假设我们这里截取红黑树的一部分,放在左边,通过操作如果可以把他转化为右边的形式,那么我们就称将根为x的子树进行了左旋,反之我们称将根为Y的树进行了右旋:

恰好慢板同学把自己红黑树弄乱了,然后请你帮忙进行修复,他将向你描述他的红黑树(混乱的。。。)。然后告诉他需要用哪种方式旋转某个节点。在你完成工作之后,直接向大黄提交新的树的中序遍历结果就好了。
Hint:
在这里好心的慢板同学给你简单的解释下样例:
最开始的时候树的样子是这样的:
0
/ \
1 2
然后对于标号为0的节点进行右旋,结果将变为:
1
\
0
\
2
然后呢。。。
中序遍历?这个是什么东西,哪个人可以告诉我下。。。。
- 输入
- 输入分两部分:
第一部分:一个整数T(1<=T<=10),表示测试的组数。
第二部分:第一行是一个数字N,表示红黑树的节点个数。0<N<10
然后下面有N行,每行三个数字,每个数字的大小都在-1~N-1之间。第一个数字表示当前节点的标号,后面两个数字表示这个节点的左孩子和右孩子。如果是-1的话表示是空节点。对于所有的输入来说标号为0节点为根。
然后是一个数字M表示需要旋转的次数。M<100
接下来M行,每行有两个数字,分别表示你要旋转的节点标号和你需要的操作。标号的范围为0~n-1,如果标号后面的数字0,那么表示为左旋。如果是1,则表示右旋。 - 输出
- 每组测试返回N行数字,表示对树的中序遍历。在每组测试数据之后留一行空行。
- 样例输入
-
1
3
0 1 2
1 -1 -1
2 -1 -1
1
0 1 - 样例输出
-
1
0
2
旋转操作不影响中序遍历。只要把树存起来再中序遍历即可。#include <iostream>
#include <utility>
#include <vector>
using namespace std; typedef pair<int,int> Node; void orderTraverse(vector<Node>& tree, int root){
if(tree[root].first!=-) orderTraverse(tree,tree[root].first);
cout<<root<<endl;
if(tree[root].second!=-) orderTraverse(tree,tree[root].second);
} int main(){
int T;
cin >> T;
while(T--){
int n;
cin >> n;
vector<Node> tree(n);
for(int i = ; i < n; ++ i){
int num;
cin >> num;
cin >> tree[num].first >> tree[num].second;
}
int m;
cin >> m;
for(int i = ; i < m; ++ i){
int a,b;
cin >> a >>b;
}
orderTraverse(tree,);
cout<<endl;
}
return ;
}
ACM 红黑树的更多相关文章
- 红黑树——算法导论(15)
1. 什么是红黑树 (1) 简介 上一篇我们介绍了基本动态集合操作时间复杂度均为O(h)的二叉搜索树.但遗憾的是,只有当二叉搜索树高度较低时,这些集合操作才会较快:即当树的高度较高(甚至一种极 ...
- jdk源码分析红黑树——插入篇
红黑树是自平衡的排序树,自平衡的优点是减少遍历的节点,所以效率会高.如果是非平衡的二叉树,当顺序或逆序插入的时候,查找动作很可能会遍历n个节点 红黑树的规则很容易理解,但是维护这个规则难. 一.规则 ...
- 谈c++ pb_ds库(二) 红黑树大法好
厉害了,没想到翻翻pb_ds库看到这么多好东西,封装好的.现成的splay.红黑树.avl... 即使不能在考场上使用也可以用来对拍哦 声明/头文件 #include <ext/pb_ds/tr ...
- 定时器管理:nginx的红黑树和libevent的堆
libevent 发生超时后, while循环一次从堆顶del timer——直到最新调整的最小堆顶不是超时事件为止,(实际是del event),但是会稍后把这个timeout的 event放到ac ...
- 从2-3-4树到红黑树(下) Java与C的实现
欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 相关博客: 从2-3-4树到红黑树(上) 从2-3-4树到红黑树(中) 1. 实现技 ...
- 红黑树/B+树/AVL树
RB Tree 红黑树 :http://blog.csdn.net/very_2/article/details/5722682 Nginx的RBTree实现 :http://blog.csdn ...
- 论AVL树与红黑树
首先讲解一下AVL树: 例如,我们要输入这样一串数字,10,9,8,7,15,20这样一串数字来建立AVL树 1,首先输入10,得到一个根结点10 2,然后输入9, 得到10这个根结点一个左孩子结点9 ...
- DataStructure——红黑树学习笔记
1.前言 本文伪码和解释参考: http://blog.csdn.net/v_JULY_v/article/details/6105630 C实现的源码本文未贴出,请见: http://blog.cs ...
- 红黑树(Red-Black tree)
红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性.同时红黑树更是一颗自平衡的排序二叉树.我们知道一颗基本的二叉树他们都需要满足一个基本性质–即树中的任何节点的值大于它的左子节点,且小 ...
随机推荐
- find 查找文件 -exec 然后压缩 查看tar包的内容
[root@cs Downloads]# find ./ -name "banner*" -exec tar -cvf k.tar "{}" \; ./bann ...
- CLR via C#(09)-扩展方法
对于一些现成的类,如果我们想添加一些新的方法来完善功能,但是不想改变已有的封装,也不想使用派生类,那么该怎么办呢?这里我们可以使用扩展方法. 一见钟情--初识扩展 扩展方法使您能够向现有类型“添加”方 ...
- 数据结构和算法 – 番外篇.时间测试类Timing
public class Timing { //startingTime--用来存储正在测试的代码的开始时间. TimeSpan startingTime; //duration--用来存储正在测试的 ...
- SQL中的JOIN类型解释(CROSS, INNER,OUTER),关键字ON,USING
书上讲得明白,解了不少迷惑. SELECT e.fname, e.lname, d.name FROM employee AS e INNER JOIN department AS d ON e.de ...
- Java程序员要求具备的10项技能
1.语法:必须比较熟悉,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息知道是什么样的语法错误并且知道任何修正. 2.命令:必须熟悉JDK带的一些常用命令及其常用选项,命令至少需要熟悉:a ...
- oracle JOB学习(一)---基础
oracle job简介 下面文章来自网友(格式稍加整理) 主要的使用情景 定时在后台执行相关操作:如每天晚上0点将一张表的数据保存到另一张表中,2:定时备份数据库等 熟化说万事开头难,这 ...
- golang基础知识之文件操作
读取文件所有内容以及获得文件操作对象 package mainimport ( "bufio" "fmt" "io" "io/io ...
- [Oracle] 生产上表的列类型更新
由于粗心,数据库脚本生成的时候错将一个类型NUMBER(5)的字段类型改为 VARCHAR2(5) 直接进行表修改会报错,因为数据已经存在,不能进行更新: ); 大体思路如下: 将要更改类 ...
- web开发的步骤
前端知道是浏览器呈现的部分,相对于前端,后台你可以理解为服务器端专门处理.读取.存储数据库数据的部分. 因为网站是基于B\S架构,即浏览器---服务端架构,就程序来讲,可笼统划分为前端程序和服务器端程 ...
- 在ubuntu中安装maven
安装环境 操作系统:ubuntu 14.04.1 server amd64 安装jdk 在安装maven之前,必须确保已经安装过jdk. 安装jdk的方法请参考文章<在ubuntu中安装jdk& ...