找到第k个最小元----快速选择
此算法借用快速排序算法。
这个快速选择算法主要利用递归调用,数组存储方式。包含3个文件,头文件QuickSelect.h,库函数QuickSelect.c,测试文件TestQuickSelect。
其中Cutoff可以自己给定,这个当开始给定的数组(或者递归调用产生的子数组)的元素个数<=20个时,采用插入排序。一般认为当元素个数<=20时,插入排序更快。这个20不是固定的,在这附近浮动都可以的。
头文件QuickSelect.h
#ifndef QuickSelect_H
#define QuickSelect_H
#define Cutoff 20
typedef int ElementType;
ElementType Median3(ElementType A[], int left, int right);
void Swap(ElementType *p, ElementType*q);
void InsertionSort(ElementType A[], int N);
ElementType QuickSelect(ElementType A[],int k, int N);
ElementType Qselect(ElementType A[],int k, int Left, int Right);
void PrintMatrix(ElementType A[], int N);
#endif // !QuickSelect_H
库函数QuickSelect.c
#include "QuickSelect.h"
#include<stdio.h>
//通过三数中值分割法获得数组的枢纽元
ElementType Median3(ElementType A[], int Left, int Right)
{
int Center = (Left + Right) / ;
if (A[Left] > A[Right])
Swap(&A[Left], &A[Right]);
if (A[Left] > A[Center])
Swap(&A[Left], &A[Center]);
if (A[Center] > A[Right])
Swap(&A[Center], &A[Right]);
//上述三次交换使得:A[Left]<A[Center]<A[Right]
Swap(&A[Center], &A[Right - ]);
return A[Right - ];//返回枢纽元;
} //交换指针p和q各自指向的值;
void Swap(ElementType * p, ElementType * q)
{
ElementType Tmp;
Tmp = *p;
*p = *q;
*q = Tmp;
} //当开始给定的数组(或者递归调用产生的子数组)的元素个数<=20个时,采用插入排序。
void InsertionSort(ElementType A[], int N)
{
int j, P;
ElementType Tmp;
for (P = ; P < N; P++)
{
Tmp = A[P];
for (j = P; j > && A[j - ] > Tmp; j--)
A[j] = A[j - ];
A[j] = Tmp;
}
} //快速选择算法驱动程序
ElementType QuickSelect(ElementType A[],int k, int N)
{
return Qselect(A, k-, , N - );//该程序即为,输入,k,返回A[k]。因为A从0开始存储,如果想找第5个最小值,其实找的是A[4],所以当我们找第k个值时,应输入k-1。
} //快速选择核心算法
ElementType Qselect(ElementType A[], int k, int Left, int Right)
{
int i, j;
ElementType Pivot;
if (Left + Cutoff - <= Right)//此处Cutoff-1是为了和N-1=Right对应上
{
Pivot = Median3(A, Left, Right);//调用枢纽元函数选取枢纽元
i = Left; j = Right - ;
for (; ;)
{
while (A[++i] < Pivot);
while (A[--j] > Pivot);
if (i < j) Swap(&A[i], &A[j]);
else break;
}
Swap(&A[i], &A[Right - ]);
if (k < i)
Qselect(A, k, Left, i - );//对剩下小于枢纽元的元素递归排序
else if (k>i)
Qselect(A, k, i + , Right);//对剩下大于枢纽元的元素递归排序
//当k=i时,即查询的值==枢纽元,则找到了,返回A[k]
}
else//当最后子数组只有Cutoff个,则采用插入排序。
InsertionSort(A + Left, Right - Left + );
return A[k];
} //打印数组
void PrintMatrix(ElementType A[], int N)
{
for (int i = ; i < N; i++)
printf("%d ", A[i]);
}
测试文件TestQuickSelect
#include "QuickSelect.h"
#include <stdio.h>
#include<time.h>
#include<stdlib.h>
#define N 100000
int main()
{
ElementType A[N] ;
int ID;
srand((unsigned)time(NULL));
for (int i = ; i < N; i++)
{
//A[i] = rand() % N;
A[i] =N-i;//100000个数,倒序排
} printf("\n");
//PrintMatrix(A, N);
printf("请输入要查询的ID:");
scanf_s("%d", &ID);
printf("Result:%d",QuickSelect(A, ID, N));
printf("\n");
}

找到第k个最小元----快速选择的更多相关文章
- 在未排序的数组中找到第 k 个最大的元素
在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 输出: 5 ...
- 【一起刷LeetCode】在未排序的数组中找到第 k 个最大的元素
题目描述 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 ...
- 选取第K大数的快速选择算法和注意事项
快速选择算法,是一种能在大致O(N)的时间内选取数组中第k大或者k小的算法.其基本思路与快速排序算法类似,也是分治的思想. 其实这个算法是个基础算法,但是不常用,所以今天编的时候错了POJ2388,才 ...
- [程序员代码面试指南]第9章-在两个长度相等的排序数组中找到第k小的数(二分)
题目 给定两个有序数组arr1和arr2,再给定一个整数k,返回所有的数中第k小的数. 题解 利用题目"在两个长度相等的排序数组中找到第上中位数"的函数 分类讨论 k < 1 ...
- 比列的数目更多,以便找到第一k小值
问题叙述性说明:现有n作为一个有序序列(2,3,9),(3,5,11,23),(1,4,7,9,15,17,20),(8,15,35,9),(20,30,40),第k小值. 问题分析:可用多路归并排序 ...
- 215. Kth Largest Element in an Array【Medium】【找到第 k 大的元素】
Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...
- 算法总结之 在两个排序数组中找到第K小的数
给定两个有序数组arr1 和 arr2 ,再给定一个int K,返回所有的数中第K小的数 要求长度如果分别为 N M,时间复杂度O(log(min{M,N}),额外空间复杂度O(1) 解决此题的方法跟 ...
- 【Leetcode 堆、快速选择、Top-K问题 BFPRT】有序矩阵中第K小的元素(378)
题目 给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第k小的元素. 请注意,它是排序后的第k小元素,而不是第k个元素. 示例: matrix = [ [ 1, 5, 9], [ ...
- 【Leetcode 堆、快速选择、Top-K问题 BFPRT】数组中的第K个最大元素(215)
这道题很强大,引出了很多知识点 题目 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5 ...
随机推荐
- Drawable实战解析:Android XML shape 标签使用详解(apk瘦身,减少内存好帮手)
Android XML shape 标签使用详解 一个android开发者肯定懂得使用 xml 定义一个 Drawable,比如定义一个 rect 或者 circle 作为一个 View 的背景. ...
- ecshop验证码
<?php //仿制ecshop验证码(四位大写字母和数字.背景) //处理码值(四位大写字母和数字组成) //所有的可能的字符集合 $chars = 'ABCDEFGHIJKLMNOPQRST ...
- maven-sprigmvc-mybatis配置
pom.xml配置 <?xml version="1.0"?> <project xsi:schemaLocation="http://maven.ap ...
- ABP创建数据库操作步骤
1 ABP创建数据库操作步骤 1.1 SimpleTaskSystem.Web项目中的Web.config文件修改数据库配置. <add name="Default" pro ...
- 完美解决CodeSmith无法获取MySQL表及列Description说明注释的方案
问题描述: CodeSmith是现在比较实用的代码生成器,但是我们发现一个问题: 使用CodeSmith编写MySQL模板的时候,会发现一个问题:MySQL数据表中的列说明获取不到,也就是column ...
- Linux LVM逻辑卷配置过程详解
许多Linux使用者安装操作系统时都会遇到这样的困境:如何精确评估和分配各个硬盘分区的容量,如果当初评估不准确,一旦系统分区不够用时可能不得不备份.删除相关数据,甚至被迫重新规划分区并重装操作系统,以 ...
- NYOJ 998
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...
- 2DToolkit官方文档中文版打地鼠教程(一):初始设置
这是2DToolkit官方文档中 Whack a Mole 打地鼠教程的译文,为了减少文中过多重复操作的翻译,以及一些无必要的句子,这里我假设你有Unity的基础知识(例如了解如何新建Sprite等) ...
- 全面解析ASP.NET MVC模块化架构方案
什么叫架构?揭开架构神秘的面纱,无非就是:分层+模块化.任意复杂的架构,你也会发现架构师也就做了这两件事. 本文将会全面的介绍我们团队在模块化设计方面取得的经验.之所以加了“全面”二字,是因为本文的内 ...
- .NET基础拾遗(2)面向对象的实现和异常的处理基础
Index : (1)类型语法.内存管理和垃圾回收基础 (2)面向对象的实现和异常的处理基础 (3)字符串.集合与流 (4)委托.事件.反射与特性 (5)多线程开发基础 (6)ADO.NET与数据库开 ...