找到第k个最小元----快速选择
此算法借用快速排序算法。
这个快速选择算法主要利用递归调用,数组存储方式。包含3个文件,头文件QuickSelect.h,库函数QuickSelect.c,测试文件TestQuickSelect。
其中Cutoff可以自己给定,这个当开始给定的数组(或者递归调用产生的子数组)的元素个数<=20个时,采用插入排序。一般认为当元素个数<=20时,插入排序更快。这个20不是固定的,在这附近浮动都可以的。
头文件QuickSelect.h
#ifndef QuickSelect_H
#define QuickSelect_H
#define Cutoff 20
typedef int ElementType;
ElementType Median3(ElementType A[], int left, int right);
void Swap(ElementType *p, ElementType*q);
void InsertionSort(ElementType A[], int N);
ElementType QuickSelect(ElementType A[],int k, int N);
ElementType Qselect(ElementType A[],int k, int Left, int Right);
void PrintMatrix(ElementType A[], int N);
#endif // !QuickSelect_H
库函数QuickSelect.c
#include "QuickSelect.h"
#include<stdio.h>
//通过三数中值分割法获得数组的枢纽元
ElementType Median3(ElementType A[], int Left, int Right)
{
int Center = (Left + Right) / ;
if (A[Left] > A[Right])
Swap(&A[Left], &A[Right]);
if (A[Left] > A[Center])
Swap(&A[Left], &A[Center]);
if (A[Center] > A[Right])
Swap(&A[Center], &A[Right]);
//上述三次交换使得:A[Left]<A[Center]<A[Right]
Swap(&A[Center], &A[Right - ]);
return A[Right - ];//返回枢纽元;
} //交换指针p和q各自指向的值;
void Swap(ElementType * p, ElementType * q)
{
ElementType Tmp;
Tmp = *p;
*p = *q;
*q = Tmp;
} //当开始给定的数组(或者递归调用产生的子数组)的元素个数<=20个时,采用插入排序。
void InsertionSort(ElementType A[], int N)
{
int j, P;
ElementType Tmp;
for (P = ; P < N; P++)
{
Tmp = A[P];
for (j = P; j > && A[j - ] > Tmp; j--)
A[j] = A[j - ];
A[j] = Tmp;
}
} //快速选择算法驱动程序
ElementType QuickSelect(ElementType A[],int k, int N)
{
return Qselect(A, k-, , N - );//该程序即为,输入,k,返回A[k]。因为A从0开始存储,如果想找第5个最小值,其实找的是A[4],所以当我们找第k个值时,应输入k-1。
} //快速选择核心算法
ElementType Qselect(ElementType A[], int k, int Left, int Right)
{
int i, j;
ElementType Pivot;
if (Left + Cutoff - <= Right)//此处Cutoff-1是为了和N-1=Right对应上
{
Pivot = Median3(A, Left, Right);//调用枢纽元函数选取枢纽元
i = Left; j = Right - ;
for (; ;)
{
while (A[++i] < Pivot);
while (A[--j] > Pivot);
if (i < j) Swap(&A[i], &A[j]);
else break;
}
Swap(&A[i], &A[Right - ]);
if (k < i)
Qselect(A, k, Left, i - );//对剩下小于枢纽元的元素递归排序
else if (k>i)
Qselect(A, k, i + , Right);//对剩下大于枢纽元的元素递归排序
//当k=i时,即查询的值==枢纽元,则找到了,返回A[k]
}
else//当最后子数组只有Cutoff个,则采用插入排序。
InsertionSort(A + Left, Right - Left + );
return A[k];
} //打印数组
void PrintMatrix(ElementType A[], int N)
{
for (int i = ; i < N; i++)
printf("%d ", A[i]);
}
测试文件TestQuickSelect
#include "QuickSelect.h"
#include <stdio.h>
#include<time.h>
#include<stdlib.h>
#define N 100000
int main()
{
ElementType A[N] ;
int ID;
srand((unsigned)time(NULL));
for (int i = ; i < N; i++)
{
//A[i] = rand() % N;
A[i] =N-i;//100000个数,倒序排
} printf("\n");
//PrintMatrix(A, N);
printf("请输入要查询的ID:");
scanf_s("%d", &ID);
printf("Result:%d",QuickSelect(A, ID, N));
printf("\n");
}

找到第k个最小元----快速选择的更多相关文章
- 在未排序的数组中找到第 k 个最大的元素
在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 输出: 5 ...
- 【一起刷LeetCode】在未排序的数组中找到第 k 个最大的元素
题目描述 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5,6,4] 和 k = 2 ...
- 选取第K大数的快速选择算法和注意事项
快速选择算法,是一种能在大致O(N)的时间内选取数组中第k大或者k小的算法.其基本思路与快速排序算法类似,也是分治的思想. 其实这个算法是个基础算法,但是不常用,所以今天编的时候错了POJ2388,才 ...
- [程序员代码面试指南]第9章-在两个长度相等的排序数组中找到第k小的数(二分)
题目 给定两个有序数组arr1和arr2,再给定一个整数k,返回所有的数中第k小的数. 题解 利用题目"在两个长度相等的排序数组中找到第上中位数"的函数 分类讨论 k < 1 ...
- 比列的数目更多,以便找到第一k小值
问题叙述性说明:现有n作为一个有序序列(2,3,9),(3,5,11,23),(1,4,7,9,15,17,20),(8,15,35,9),(20,30,40),第k小值. 问题分析:可用多路归并排序 ...
- 215. Kth Largest Element in an Array【Medium】【找到第 k 大的元素】
Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...
- 算法总结之 在两个排序数组中找到第K小的数
给定两个有序数组arr1 和 arr2 ,再给定一个int K,返回所有的数中第K小的数 要求长度如果分别为 N M,时间复杂度O(log(min{M,N}),额外空间复杂度O(1) 解决此题的方法跟 ...
- 【Leetcode 堆、快速选择、Top-K问题 BFPRT】有序矩阵中第K小的元素(378)
题目 给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第k小的元素. 请注意,它是排序后的第k小元素,而不是第k个元素. 示例: matrix = [ [ 1, 5, 9], [ ...
- 【Leetcode 堆、快速选择、Top-K问题 BFPRT】数组中的第K个最大元素(215)
这道题很强大,引出了很多知识点 题目 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: 输入: [3,2,1,5 ...
随机推荐
- android 使用Tabhost 发生could not create tab content because could not find view with id 错误
使用Tabhost的时候经常报:could not create tab content because could not find view with id 错误. 总结一下发生错误的原因,一般的 ...
- 前端学Markdown
前面的话 我个人理解,Markdown就是一个富文本编辑器语言,类似于sass对于css的功能,Markdown也可以叫做HTML预处理器,只不过它是一门轻量级的标记语言,可以更简单的实现HTML ...
- 用WebRequest +HtmlAgilityPack 从外网抓取数据到本地
相信大家对于WebRequest 并不陌生,我们在C#中发请求的方式,就是创建一个WebRequest .那么如果我们想发一个请求到外网,比如国内上不了的一些网站,那么该怎么做呢? 其实WebRequ ...
- 代码的坏味道(16)——纯稚的数据类(Data Class)
坏味道--纯稚的数据类(Data Class) 特征 纯稚的数据类(Data Class) 指的是只包含字段和访问它们的getter和setter函数的类.这些仅仅是供其他类使用的数据容器.这些类不包 ...
- Function.prototype.toString 的使用技巧
Function.prototype.toString这个原型方法可以帮助你获得函数的源代码, 比如: function hello ( msg ){ console.log("hello& ...
- 中文 iOS/Mac 开发博客列表
中文 iOS/Mac 开发博客列表 博客地址 RSS地址 OneV's Den http://onevcat.com/atom.xml 一只魔法师的工坊 http://blog.ibireme.com ...
- 【干货分享】流程DEMO-合同会审表
流程名: 合同会审表 业务描述: 合同的审批及签订 流程相关文件: 流程包.xml 事务呈批表业务服务.xml 事务呈批表主数据.xml 流程说明: 1.此流程必须先进行事务呈批表流程的配置才可 ...
- 两个变量交换的四种方法(Java)
对于两种变量的交换,我发现四种方法,下面我用Java来演示一下. 1.利用第三个变量交换数值,简单的方法. (代码演示一下) class TestEV //创建一个类 { public static ...
- 关于Hadoop用户体系的设想(胡思乱想)
关于Hadoop的用户体系设计设想 Hadoop并没有一个完整的用户体系,其权限控制的对象,主要是Linux的其它用户(即非安装Hadoop的用户),控制方式也和Linux的文件权限很像,目前权限控制 ...
- JS中关于字符串的几个常用又容易忘记的方法
1>.字符串连接:concat(): 左边字符串. concat(连接的字符串1,字符串2,....); 获取指定位置的字符:charAt(): 返回指定位置的字符: 字符串.charAt(i ...