D. Persistent Bookcase

Recently in school Alina has learned what are the persistent data structures: they are data structures that always preserves the previous version of itself and access to it when it is modified.

After reaching home Alina decided to invent her own persistent data structure. Inventing didn't take long: there is a bookcase right behind her bed. Alina thinks that the bookcase is a good choice for a persistent data structure. Initially the bookcase is empty, thus there is no book at any position at any shelf.

The bookcase consists of n shelves, and each shelf has exactly m positions for books at it. Alina enumerates shelves by integers from 1to n and positions at shelves — from 1 to m. Initially the bookcase is empty, thus there is no book at any position at any shelf in it.

Alina wrote down q operations, which will be consecutively applied to the bookcase. Each of the operations has one of four types:

  • i j — Place a book at position j at shelf i if there is no book at it.
  • i j — Remove the book from position j at shelf i if there is a book at it.
  • i — Invert book placing at shelf i. This means that from every position at shelf i which has a book at it, the book should be removed, and at every position at shelf i which has not book at it, a book should be placed.
  • k — Return the books in the bookcase in a state they were after applying k-th operation. In particular, k = 0 means that the bookcase should be in initial state, thus every book in the bookcase should be removed from its position.

After applying each of operation Alina is interested in the number of books in the bookcase. Alina got 'A' in the school and had no problem finding this values. Will you do so?

Input

The first line of the input contains three integers nm and q (1 ≤ n, m ≤ 103, 1 ≤ q ≤ 105) — the bookcase dimensions and the number of operations respectively.

The next q lines describes operations in chronological order — i-th of them describes i-th operation in one of the four formats described in the statement.

It is guaranteed that shelf indices and position indices are correct, and in each of fourth-type operation the number k corresponds to some operation before it or equals to 0.

Output

For each operation, print the number of books in the bookcase after applying it in a separate line. The answers should be printed in chronological order.

Examples

input

2 3 3
1 1 1
3 2
4 0

output

1
4
0

input

4 2 6
3 2
2 2 2
3 3
3 2
2 2 2
3 2

output

2
1
3
3
2
4

input

2 2 2
3 2
2 2 1

output

2
1

Note

This image illustrates the second sample case.

Solution

 题目大意:

给出一个矩阵,要支持如下操作

1.(x,y)位置变成1

2.(x,y)位置变成0

3.整行取反,0变成1,1变成0

4.退回到第k次操作后的状态

一共Q次询问,每次询问后输出矩阵中1的个数

首先,把矩阵展成序列,对其建线段树,这样,1,2,3操作就是简单的单点修改,区间修改

操作4的难处在于空间不允许保存历史状态,

考虑离线。

首先假设我们得到$i$之前的所有操作的答案,$i+1$次操作是退回操作,显然$i+1$次操作的答案,可以通过以前的答案得到,但问题涉及状态的变化

很显然,一次退回操作就相当于将这个操作之后的,到下一次退回操作之前的所有操作,从其退回到的状态开始修改

这显然是个树形的结构,于是我们的方法就非常直观了

对于所有的操作,我们假定$i$操作是向$i+1$操作连一条单向边的,那么对于一个退回操作$k$,它所退回到的操作是$x$,就相当于从$x$也向$k+1$连一条单向边,然后我们用$x$把$k$的答案更新,去掉$k$既可

那么从一号操作为根的树上DFS,每次修改,记录答案,修改完后回溯,直到遍历整棵树

而这样,状态不能记录的问题就被解决了,只需要一棵线段树,不过是修改2Q次

一个操作,可能不合法,这时候需要记录一下,回溯的时候特判

Code

code from yveh

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
struct edgetype{
int s,t,next;
}e[];
int head[],cnt=;
void addedge(int s,int t)
{
e[cnt].s=s;e[cnt].t=t;e[cnt].next=head[s];head[s]=cnt++;
}
struct Node{
int data,size;
bool rev;
Node()
{
data=rev=;
}
};
bool flag;
namespace Segtree
{
Node tree[];
void pushup(int node)
{
tree[node].data=tree[node<<].data+tree[node<<|].data;
}
void build(int l,int r,int node)
{
tree[node].size=r-l+;
if (l==r)
return;
int mid=(l+r)>>;
build(l,mid,node<<);
build(mid+,r,node<<|);
}
void pushdown(int node)
{
if (tree[node].rev)
{
tree[node<<].data=tree[node<<].size-tree[node<<].data;
tree[node<<].rev^=;
tree[node<<|].data=tree[node<<|].size-tree[node<<|].data;
tree[node<<|].rev^=;
tree[node].rev=;
}
}
void modify_pos(int pos,int l,int r,int node,int val)
{
if (l==r)
{
flag=tree[node].data==val;
tree[node].data=val;
return;
}
pushdown(node);
int mid=(l+r)>>;
if (pos<=mid)
modify_pos(pos,l,mid,node<<,val);
else
modify_pos(pos,mid+,r,node<<|,val);
pushup(node);
}
void modify_rev(int L,int R,int l,int r,int node)
{
if (L<=l&&r<=R)
{
tree[node].data=tree[node].size-tree[node].data;
tree[node].rev^=;
return;
}
pushdown(node);
int mid=(l+r)>>;
if (L<=mid)
modify_rev(L,R,l,mid,node<<);
if (R>mid)
modify_rev(L,R,mid+,r,node<<|);
pushup(node);
}
int query()
{
return tree[].data;
}
}
int n,m,q,opt,u,v,k;
int a[][],ans[];
void init()
{
scanf("%d%d%d",&n,&m,&q);
Segtree::build(,n*m,);
}
void dfs(int node)
{
if (a[node][]==)
{
Segtree::modify_pos((a[node][]-)*m+a[node][],,n*m,,a[node][]);
if (!flag)
a[node][]=;
else
a[node][]=;
}
if (a[node][]==)
{
Segtree::modify_pos((a[node][]-)*m+a[node][],,n*m,,a[node][]);
if (!flag)
a[node][]=;
else
a[node][]=;
}
if (a[node][]==)
Segtree::modify_rev((a[node][]-)*m+,a[node][]*m,,n*m,);
ans[node]=Segtree::query();
for (int i=head[node];i!=-;i=e[i].next)
dfs(e[i].t);
if (a[node][]==)
Segtree::modify_pos((a[node][]-)*m+a[node][],,n*m,,a[node][]);
if (a[node][]==)
Segtree::modify_pos((a[node][]-)*m+a[node][],,n*m,,a[node][]);
if (a[node][]==)
Segtree::modify_rev((a[node][]-)*m+,a[node][]*m,,n*m,);
}
void work()
{
memset(head,0xff,sizeof(head));
cnt=;
for (int i=;i<=q;i++)
{
scanf("%d",&a[i][]);
if (a[i][]==)
{
scanf("%d%d",&a[i][],&a[i][]);
a[i][]=;
}
if (a[i][]==)
{
scanf("%d%d",&a[i][],&a[i][]);
a[i][]=;
} if (a[i][]==)
scanf("%d",&a[i][]);
if (a[i][]==)
{
scanf("%d",&k);
addedge(k,i);
}
else
addedge(i-,i);
}
dfs();
for (int i=;i<=q;i++)
printf("%d\n",ans[i]);
}
int main()
{
init();
work();
return ;
}

YveH打CF时问我的题...当时蹦出这个想法,但是他没能来得及当场A掉

觉得思路挺有意义的一道题,所以留下了想法...

实际上我还不知道题解是什么.....

【Codeforces-707D】Persistent Bookcase DFS + 线段树的更多相关文章

  1. Codeforces 707D Persistent Bookcase(时间树)

    [题目链接] http://codeforces.com/problemset/problem/707/D [题目大意] 给出一个矩阵,要求满足如下操作,单个位置x|=1或者x&=0,一行的数 ...

  2. 【离线】【深搜】【树】Codeforces 707D Persistent Bookcase

    题目链接: http://codeforces.com/problemset/problem/707/D 题目大意: 一个N*M的书架,支持4种操作 1.把(x,y)变为有书. 2.把(x,y)变为没 ...

  3. CodeForces 707D Persistent Bookcase ——(巧妙的dfs)

    一个n*m的矩阵,有四种操作: 1.(i,j)处变1: 2.(i,j)处变0: 3.第i行的所有位置1,0反转: 4.回到第k次操作以后的状态: 问每次操作以后整个矩阵里面有多少个1. 其实不好处理的 ...

  4. CodeForces 707D Persistent Bookcase

    $dfs$,优化. $return$操作说明该操作完成之后的状态和经过操作$k$之后的状态是一样的.因此我们可以建树,然后从根节点开始$dfs$一次(回溯的时候复原一下状态)就可以算出所有状态的答案. ...

  5. HDU 5877 dfs+ 线段树(或+树状树组)

    1.HDU 5877  Weak Pair 2.总结:有多种做法,这里写了dfs+线段树(或+树状树组),还可用主席树或平衡树,但还不会这两个 3.思路:利用dfs遍历子节点,同时对于每个子节点au, ...

  6. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  7. Codeforces1110F Nearest Leaf dfs + 线段树 + 询问离线

    Codeforces1110F dfs + 线段树 + 询问离线 F. Nearest Leaf Description: Let's define the Eulerian traversal of ...

  8. dfs+线段树 zhrt的数据结构课

    zhrt的数据结构课 这个题目我觉得是一个有一点点思维的dfs+线段树 虽然说看起来可以用树链剖分写,但是这个题目时间卡了树剖 因为之前用树剖一直在写这个,所以一直想的是区间更新,想dfs+线段树,有 ...

  9. codeforces 707D D. Persistent Bookcase(dfs)

    题目链接: D. Persistent Bookcase time limit per test 2 seconds memory limit per test 512 megabytes input ...

随机推荐

  1. jquery 添加节点的几种方法介绍

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...

  2. Basic: Fisher's transform

    来源:http://bbs.chinahrd.net/thread-709742-1-1.html,Kenneth的回答. z = 0.5 * ln [ (1+r)/(1-r) ]" C0 ...

  3. 在iframe中获取本iframe DOM引用

    window.frameElement 获取本iframe DOM window.frameElement.contentDocument.getElementById('id') 获取这个ifram ...

  4. Working Set缓存算法(转)

    为了加深对缓存算法的理解,特转此篇,又由于本文内容过多,故不做翻译,原文地址Working Set页面置换算法 In the purest form of paging, processes are ...

  5. 完全背包变型题(hdu5410)

    这是2015年最后一场多校的dp题,当时只怪自己基础太差,想了1个多小时才想出来,哎,9月份好好巩固基础,为区域赛做准备.题目传送门 题目的意思是给你n元钱,m类糖果,每类糖果分别有p, a, b, ...

  6. Ace - Responsive Admin Template

    Ace简介: Ace 是一个轻量.功能丰富.HTML5.响应式.支持手机及平板电脑上浏览的管理后台模板,基于CSS框架Bootstrap制作,Bootstrap版本更新至 3.0,Ace – Resp ...

  7. 反距离权重插值inverse distance weighting,IDW

    反距离权重 (IDW) 插值显式假设:彼此距离较近的事物要比彼此距离较远的事物更相似.当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值.与距离预测位置较远的测量值相比,距离预测位置 ...

  8. JAVA内嵌数据库H2的使用入门

    H2数据库是开源的,非常适合做嵌入式数据库使用,尤其用java编码的时候. H2的优势: 1.h2采用纯Java编写,因此不受平台的限制. 2.h2只有一个jar文件,十分适合作为嵌入式数据库试用. ...

  9. 【CSS3】 线性渐变

    参考地址:http://www.w3cplus.com/css3/new-css3-linear-gradient.html background-image: linear-gradient(to ...

  10. iOS -- cocopods使用