递归和for循环(迭代法)很像,都是通过循环去完成一件事。

采用Top-Down思维去设计的递归结构,又会比for多一些不同的能力。多什么能力?

递归的基础

先复习一下递归,递归的定义:递归(英语:Recursion),又译为递回,在数学与计算机科学中,是指在函数的定义中使用函数自身的方法。

递归的本质就在:递去归来 两个流程中。 初学者刚接触会有点抽象,下面通过一些案例来认识。

假设需要你实现一个阶乘的计算函数,

阶乘的定义:

5的阶乘是 5*4*3*2*1=120

def factorial(number):
if number == 1:
return 1
else:
return number * factorial(number - 1) print(factorial(5))
// 120

递归需要考虑三个条件:

  1. 将问题拆分成一个重复使用的子问题;
  2. 注意,这个子问题和问题的规模无关;
  3. 必须包含终止条件 (终止条件即初始状态)。

递归的底层实现(不是重点)

递归的底层实现不是本文的重点,了解一下就行。

递归在编程语言的底层实现通常依赖于调用栈(call stack):

  • 调用栈

    • 每次函数调用时,程序会将函数的参数、局部变量和返回地址等信息压入栈帧。
    • 当递归函数调用自身时,会创建新的栈帧压入栈中。
    • 函数执行完毕后,栈帧被弹出,返回控制权给调用者。
  • 基线条件

    • 递归必须有终止条件,否则会导致栈溢出(stack overflow)。
    • 每次递归调用都应该向基线条件靠近。
  • 内存管理

    • 调用栈通常在内存的“栈区”分配。栈的大小有限制,过多的递归调用可能导致栈溢出。
    • 有些语言提供机制来增加栈的大小,但一般不推荐依赖深层递归。

总结:

  • 递归实现的效率和安全性与具体语言的特性和编译器的优化密切相关。

  • 递归的底层实现,就是把相关变量数据(缓存)处理后,一层一层的压入栈,等到了基准条件后,在逐层拿出处理。

计算机眼里的递归:

计算机使用栈来记录正在调用的函数,叫调用栈

有个局部变量 number 记录当前值。

递归的应用场景

  • 处理任意多层事情的场景,都可以考虑用递归。

  • 当问题和子问题具有递推关系,比如杨辉三角、计算阶乘。

  • 具有递归性质的数据结构,比如链表、树、图。

  • 反向性问题,比如取反操作。

编程中 两种解决问题的思维

这个才是本文重点要学习的。

当面对未来未知的情况时,考虑使用使用自上而下解决问题的思维。

两种编写计算函数的方法:

  • 自下而上(Bottom - Up)

    类似循环
  • 自上而下 (Top - Down)

    递归思想

两者区别?

在计算函数时,自下而上和自上而下是两种不同的思维方式和实现策略:

在计算函数时,特别是像阶乘这样的递归函数,可以使用两种主要的实现方式来实现递归计算:自下而上(bottom-up)和自上而下(top-down)。这些方法各有优缺点,理解它们有助于选择适合的实现方式来解决特定的问题。以下是对这两种实现方式的解释:

自下而上(Bottom-Up)

自下而上方法,也称为 迭代方法动态规划方法,是指从最小的子问题开始逐步构建解决方案,直到解决原始问题。这种方法通常用于动态规划算法中,但也可以用于一些简单的递归问题。

实现思路:

  1. 定义最小问题: 从问题的最小子问题开始解决。例如,在计算阶乘时,可以从 0!1! 开始。
  2. 逐步构建: 使用迭代或循环逐步计算更大的问题的解。
  3. 更新和存储: 将每个子问题的解存储起来,以便后续使用。

还是以计算阶乘的案例去介绍,自下而上实现方式:

def factorial_bottom_up(n):
if n < 0:
raise ValueError("Factorial is not defined for negative numbers")
result = 1
for i in range(2, n + 1):
result *= i
return result # 示例用法
print(factorial_bottom_up(5)) # 输出 120

解释:

  • 从 1 开始迭代计算 2 到 n 的阶乘。
  • 通过逐步乘以每个数字来更新结果,最终得到 n!

自上而下(Top-Down)

自上而下方法也称为 递归方法,是指从解决问题的最上层开始,递归地解决较小的子问题。这种方法在处理递归问题时非常自然(但可能存在重复计算的子问题,有些可以优化)。

实现思路:

  1. 定义主问题: 从问题的最上层开始解决。
  2. 递归分解: 将主问题递归地分解为较小的子问题。
  3. 基本情况: 定义递归的基本情况,以停止递归。

还是以计算阶乘的案例,展示自上而下实现:

def factorial_top_down(n):
if n < 0:
raise ValueError("Factorial is not defined for negative numbers")
if n == 0 or n == 1:
return 1
return n * factorial_top_down(n - 1) # 示例用法
print(factorial_top_down(5)) # 输出 120

解释:

  • n 开始,递归调用 factorial_top_down(n - 1),直到达到基本情况。
  • 在基本情况时返回 1,逐层返回乘积结果。

总结

  • 自下而上:通常是迭代的方法,逐步构建解决方案,适用于动态规划和需要避免重复计算的情况。它通常较为高效,尤其是在解决子问题重复计算时。

  • 自上而下:通常是递归的方法,直观地解决问题,但可能会有较高的时间复杂度和空间复杂度,尤其在处理大规模问题时。(可以通过记忆化(Memoization)来优化性能)

自上而下的思考过程——求和案例

一般来说,自下而上的实现过程比较好理解,所以这里多列举一些自上而下的案例帮助思考,

自上而下的编程思考过程:

  1. 把你正在写的函数想象成是别人实现过的函数。
  2. 辨别子问题。
  3. 看看你在子问题上调用函数时会发生什么,然后以此为基础继续。

求和案例

假设我们要写一个 sum 函数,计算数组中所有数的和。如果给函数传入数组[1,2,3,4,5],那么它会返回这些数的和15。

我们需要做的第一件事就是想象已经有人实现了 sum 函数。(当然,你可能会有点难以接受,毕竟写函数是我们自己,怎么能假设别人写好了呢! 但可以试着忘掉这一点,先假装 sum 函数已经实现好了。)

接下来,来辨别子问题。比起科学,这个过程更像是艺术,只要你多练习就能进步。 在这个例子中,可以认为子问题是数组[2,3,4,5],即原数组中除第一个数以外的元素。

最后,来看看在子问题上调用 sum 函数会发生什么 ?

如果 sum 函数“已被正确实现”并且子问题是 [2,3,4,5],那么调用 sum([2,3,4,5])时会发生什么呢?会得到2+3+4+5的和,也就是14。

而要求[1,2,3,4,5]的和,只需向 sum([2,3,4,5])的结果再加上1即可。

请使用编程语言实现一下:

mylist = [1, 2, 3, 4, 5]
def mysum(alist): if len(alist) == 1:
return alist[0]
else:
# alist[-1] = alist[len(alist)-1]
alist[0] += alist[-1] return mysum(alist[0:len(alist) - 1]) print(mysum(mylist))
# 15

台阶问题 案例

为什么需要用递归?

请写出代码:

todo

易位构词生成 案例

这个是一个很实用的案例,之前想将多个pyload 以不同位置组合成一个整体,就遇到这个难题。

请写出代码:

todo

以Top-Down思维去解决问题——递归的更多相关文章

  1. Go coding in go way(用Go的思维去coding)

    本文是Tony Bai在2017年第三届GopherChina大会上所作,来源如下 https://tonybai.com/2017/04/20/go-coding-in-go-way/ 一.序 今天 ...

  2. 从一个Bug说开去--解决问题的思路,Linked Server, Bulk Insert, DataTable 作为参数传递

    声名— 部分内容为杜撰,如有雷同,不胜荣幸! 版权所有,如要引用,请标明出处! 如果打赏,请自便! 1       背景介绍 最近一周在忙一个SQL Server 的Bug,一个简单的Bug,更新两张 ...

  3. 你应当如何学习C++以及编程(细节是必要的,但不是重要的,把时间用在集中精力去解决问题,而不是学习新技术,那样练不成高手。在实践中提高才是最重要的。最最重要的内功还是长期学习所磨练出来的自学能力)good

    最近在学习Qt但由于没有C++的基础,感觉学的很吃力.看到pongba的这篇文章感觉不错就弄过来了, 原文地址:http://blog.csdn.net/qter_wd007/article/deta ...

  4. ubutu14.04无法使用sudo,也无法切换到root用户去解决问题怎么办?

    一不小心,修改了/etc/sudoers文件. 惨了. 无法使用sudo了,啥都干不成了. 最最关键的是,也无法用root登录. 本想着要重装系统了. 后来发现了神奇的ubuntu安全模式. 1.重启 ...

  5. python递归(函数)

    递归:一个过程或函数调用自身的一种方法. 1. 效果图 2. 代码 def factorial(n): ''' 该函数用来求任意数的阶乘 参数: n 要求阶乘的数字 ''' # 基线条件 判断n是否为 ...

  6. 用函数式编程对JavaScript进行断舍离

    译者按: 当从业20的JavaScript老司机学会函数式编程时,他扔掉了90%的特性,也不用面向对象了,最后发现了真爱啊!!! 原文: How I rediscovered my love for ...

  7. Scala学习笔记 & 一些不错的学习材料 & 函数编程的历史八卦

    参考这篇文章: http://www.ibm.com/developerworks/cn/java/j-lo-funinscala1/ 这也是一个系列 严格意义上的编程范式分为:命令式编程(Imper ...

  8. OOD之问题空间到解空间—附FP的建模

    通常会被问到,什么事OOD,然后大部分人期待的答案比较死板,继承.封装.多态!懂这个的人多的去了,有什么好问?回答出来的人是否拿着Java又去做一些面向过程的勾当? 计算机革命起源于机器,因此编程语言 ...

  9. Python函数式编程,map/reduce,filter和sorted

    什么是函数式编程? 与面向对象编程(Object-oriented programming)和过程式编程(Procedural programming)并列的编程范式. 最主要的特征是,函数是第一等公 ...

  10. Java to Kotlin (1) - 就决定是你了

    2017年,Kotlin的发展可谓十分迅猛,稍微关注it界的人都知道谷歌宣布kotlin成为安卓的一级语言,不过那时候我并没有关注,因为我不是搞安卓的... 哈哈开个玩笑,其实之前也有听说过这个语言的 ...

随机推荐

  1. 案例分享!RK3568 + FPGA多通道AD采集处理与显示

    案例展示 测试数据汇总   表 1     本文带来的是基于瑞芯微RK3568J + 紫光同创Logos-2的ARM + FPGA多通道AD采集处理与显示案例. 本次案例演示的开发环境如下: Wind ...

  2. 我对《RAG/大模型/非结构化数据知识库类产品》技术架构的思考、杂谈

    1.前言 在6.28/29的稀土掘金开发者大会RAG专场上,我们公司CEO员外代表TorchV分享了我们在<RAG在企业应用中落地的难点与创新> 其中最后分享了两个观点: AI在应用场景落 ...

  3. Http基础协议

    浏览器请求方法 http1.0定义了三种: GET: 向服务器获取资源,比如常见的查询请求 POST: 向服务器提交数据而发送的请求 Head: 和get类似,返回的响应中没有具体的内容,用于获取报头 ...

  4. 基于EF Core存储的国际化服务

    前言 .NET 官方有一个用来管理国际化资源的扩展包Microsoft.Extensions.Localization,ASP.NET Core也用这个来实现国际化功能.但是这个包的翻译数据是使用re ...

  5. 浅谈:HTTP 和 HTTPS 通信原理

    1.HTTP基本概念 1.1 HTTP是什么?  HTTP (超文本传输协议)协议被用于在 Web 浏览器和网站服务器之间传递信息, HTTP 协议以明文方式发送内容,不提供任何方式的数据加密,如果攻 ...

  6. 【干货】流量录制回放工具:jvm-sandbox-repeater

    在软件开发和测试过程中,我们经常会遇到需要对网络请求进行录制和回放的需求,以便进行调试.测试和分析.为了模拟真实的用户请求,我们通常会使用各种流量录制回放工具来记录并重放网络请求. 其中,jvm-sa ...

  7. elasticdump数据迁移与内外网安装

    elasticdump数据迁移与内外网安装 一.安装node 首先获取安装包 wget https://nodejs.org/dist/v16.14.0/node-v16.14.0-linux-x64 ...

  8. 通过程序名称kill掉所有的进程

    通过程序名称kill掉所有的进程 今天差点把服务器搞崩了. 脚本的循环条件有问题,结果起了无数的nslookup,用pkill杀不掉,只能用kill一个个解决,服务器还被搞得慢得要命. 还好又黄队长, ...

  9. 3、Git之常用命令

    3.1.速查表 命令 作用 git config --global user.name 用户名 设置用户签名(昵称) git config --global user.email 邮箱 设置用户签名( ...

  10. 【郝斌C ST】01

    自学视频<郝斌C语言自学教程> 01 -  09: https://www.bilibili.com/video/BV1os411h77o 1.为什么学习C语言? - C的起源和发展 第一 ...