题目

天上的繁星一闪一闪的,甚是好看。你和你的小伙伴们一起坐在草地上,欣赏这美丽的夜景。

我们假定天上有\(n\)颗星星,它们排成一排,从左往右以此编号为1到\(n\),但是天上的星星实在太多了,你和你的小伙伴

们只能看到其中的\(k\)个星星,所以需要你在这\(n\)颗星星中选出\(k\)颗来进行观测,但是你的小伙伴给你提出了一个要求,

这\(k\)颗星星中,至少存在\(r\)颗星星是连续的,连续是指这些星星的编号连续。


分析

考虑答案可以容斥实现,也就是

\[\large\sum_{i=1}^{\lfloor\frac{k}{r}\rfloor}(-1)^{i-1}\times C(n-k+1,i)\times C(n-ir,k-ir)
\]

实质的过程就是在\(n-k+1\)个位置中选择\(i\)个位置插入长度至少为\(r\)的星星,

然后再在\(n-ir\)颗星星中选出\(k-ir\)颗星星,这样恰好选出\(k\)颗星星


代码

#include <cstdio>
#define rr register
using namespace std;
const int mod=1000000007,N=10000011;
int n,m,G,inv[N],fac[N],ans;
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline signed C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
signed main(){
fac[0]=fac[1]=inv[0]=inv[1]=1,scanf("%d%d%d",&n,&m,&G);
for (rr int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (rr int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (rr int i=1;i<=m/G;++i)
ans=mo(ans,1ll*((i&1)?1:(mod-1))*C(n-m+1,i)%mod*C(n-i*G,m-i*G)%mod);
return !printf("%d",ans);
}

#组合计数,容斥定理#U136346 数星星的更多相关文章

  1. [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)

    这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...

  2. BZOJ2839 : 集合计数 (广义容斥定理)

    题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...

  3. 51nod1284容斥定理

    1284 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题   给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10, ...

  4. 2 3 5 7的倍数 (51Nod - 1284)[容斥定理]

    20180604 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10,只有1不是2 3 5 7的倍数. Input 输入1个数N(1 <= N <= 10^1 ...

  5. 题解报告:hdu 4135 Co-prime(容斥定理入门)

    Problem Description Given a number N, you are asked to count the number of integers between A and B ...

  6. HDU1796 How many integers can you find【容斥定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1796 题目大意: 给你一个整数N.和M个整数的集合{A1.A2.-.Am}.集合内元素为非负数(包 ...

  7. Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理

    B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...

  8. hdu_5213_Lucky(莫队算法+容斥定理)

    题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...

  9. How Many Sets I(容斥定理)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...

  10. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

随机推荐

  1. 串口通信RXTXcomm使用

    一.串口通信原理 串口通信(Serial Communications)的概念非常简单,串口按位(bit)发送和接收字节. 尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时 ...

  2. 异常处理try...except...finally---day26

    1.认识异常处理 # ### 认识异常处理 #IndexError 索引超出序列范围 #lst = [1,2,3,4] #print(lst[10]) #KeyError 字典中查找一个不存在的关键字 ...

  3. python操作txt文件,去除文件中的隔行空行

    conn = re.sub(result, '\r\n', content) res = "".join( [s for s in conn.strip().splitlines( ...

  4. java+mysql实现的公益管理系统

    一功能 1.管理员的登录 2.公益项目的增删改查 3.负责人的增删改查 4.捐款人的增删改查 5.志愿者增删改查 二界面展示 1.欢迎界面 2.登录界面 3.系统首页 4.项目管理 5.负责人管理 6 ...

  5. 第125篇: 期约Promise基本特性

    好家伙,本篇为<JS高级程序设计>第十章"期约与异步函数"学习笔记 1.非重入期约 1.1.可重入代码(百度百科) 先来了解一个概念 可重入代码(Reentry cod ...

  6. 【Azure 应用服务】Azure Function App在部署时候遇见 503 ServiceUnavailable

    问题描述 在VS Code中编写好 Azure Function App代码后,通过  func azure functionapp publish 部署失败,抛出 503 Service Unava ...

  7. 【Azure Developer】使用Azure Resource Graph的查询语法的示例

    文章"[Azure Developer]在Azure Resource Graph Explorer中查看当前订阅下的所有资源信息列表并导出(如VM的名称,IP地址内网/公网,OS,区域等) ...

  8. Java 递归方法的使用 + 例子

    1 /* 2 * 递归方法的使用 3 * 1.递归方法:一个方法体内调用它自身 4 * 2.方法递归包含了一种隐式的循环,它会重复执行某段代码,但这种重复执行无须循环控制 5 * 递归一定要想已知方向 ...

  9. Find The Multiple 题解

      Find The Multiple The long-lost Sunday is coming again, and the ACM Laboratory Elimination Competi ...

  10. 各大OA调试账户默认账户口令

    1.今目标地址:http://web.jingoal.com/mgt/用户名:admin@8216261密码:1a2s3d4f5g2.IBOS博思协同地址:http://demo.ibos.com.c ...