#组合计数,容斥定理#U136346 数星星
题目
天上的繁星一闪一闪的,甚是好看。你和你的小伙伴们一起坐在草地上,欣赏这美丽的夜景。
我们假定天上有\(n\)颗星星,它们排成一排,从左往右以此编号为1到\(n\),但是天上的星星实在太多了,你和你的小伙伴
们只能看到其中的\(k\)个星星,所以需要你在这\(n\)颗星星中选出\(k\)颗来进行观测,但是你的小伙伴给你提出了一个要求,
这\(k\)颗星星中,至少存在\(r\)颗星星是连续的,连续是指这些星星的编号连续。
分析
考虑答案可以容斥实现,也就是
\]
实质的过程就是在\(n-k+1\)个位置中选择\(i\)个位置插入长度至少为\(r\)的星星,
然后再在\(n-ir\)颗星星中选出\(k-ir\)颗星星,这样恰好选出\(k\)颗星星
代码
#include <cstdio>
#define rr register
using namespace std;
const int mod=1000000007,N=10000011;
int n,m,G,inv[N],fac[N],ans;
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline signed C(int n,int m){return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
signed main(){
fac[0]=fac[1]=inv[0]=inv[1]=1,scanf("%d%d%d",&n,&m,&G);
for (rr int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (rr int i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (rr int i=1;i<=m/G;++i)
ans=mo(ans,1ll*((i&1)?1:(mod-1))*C(n-m+1,i)%mod*C(n-i*G,m-i*G)%mod);
return !printf("%d",ans);
}
#组合计数,容斥定理#U136346 数星星的更多相关文章
- [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)
这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 51nod1284容斥定理
1284 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10, ...
- 2 3 5 7的倍数 (51Nod - 1284)[容斥定理]
20180604 给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10,只有1不是2 3 5 7的倍数. Input 输入1个数N(1 <= N <= 10^1 ...
- 题解报告:hdu 4135 Co-prime(容斥定理入门)
Problem Description Given a number N, you are asked to count the number of integers between A and B ...
- HDU1796 How many integers can you find【容斥定理】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1796 题目大意: 给你一个整数N.和M个整数的集合{A1.A2.-.Am}.集合内元素为非负数(包 ...
- Codeforces Round #330 (Div. 2) B. Pasha and Phone 容斥定理
B. Pasha and Phone Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/595/pr ...
- hdu_5213_Lucky(莫队算法+容斥定理)
题目连接:hdu_5213_Lucky 题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r ...
- How Many Sets I(容斥定理)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3556 How Many Sets I Time Limit: 2 ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
随机推荐
- day05---系统的重要文件(2)
回顾 /etc/sysconfig/network-scripts/ifcfg-eth0 网卡配置文件 TYPE=Ethernet BOOTPROTO=none NAME=eth0 DEVICE=et ...
- 【Azure 应用服务】如何查看App Service中的私网IP地址?
问题描述 在使用App Service服务时,可以通过Azure 门户中的属性功能查看出站IP列表. 如果把App Service与虚拟网络(VNET)集成后,它就可以直接访问虚拟网络内部资源,那么如 ...
- 浅入 ABP 系列(6):数据库配置
浅入 ABP 系列(6):数据库配置 版权护体作者:痴者工良,微信公众号转载文章需要 <NCC开源社区>同意. 目录 浅入 ABP 系列(6):数据库配置 创建标准的 EFCore 数据库 ...
- C#多线程(11):线程等待
目录 前言 volatile 关键字 三种常用等待 再说自旋和阻塞 SpinWait 结构 属性和方法 自旋示例 新的实现 SpinLock 结构 属性和方法 示例 等待性能对比 前面我们学习了很多用 ...
- 云原生 on nLive:云上 Nebula Graph
本文首发于 Nebula Graph Community 公众号 在 #云原生# 主题分享中,来自 Nebula 云组的 Cloud 专家乔雷同大家分享云的相关知识,本文整理自该次主题直播. 云原生是 ...
- spark 下java list 或者scala list 转DataFrame or DataSet 总结
一.JAVA list 转 DataFrame or DataSet case class CaseJava( var num: String, var id: String, var start_t ...
- [程序] C++实现 http和https的反向代理程序
目录 前言 代理原理 http代理 https代理 实现 客户端 服务端 遇到的所有问题记录 Python对于回复不响应 接受的数据只有4字节 最终数据已经发给Python了 但是Python还是阻塞 ...
- vscode编译多个C/CPP文件
修改vscode里面的tasks.json文件,下面是修改好的,参考 "args": [ "-fdiagnostics-color=always", " ...
- 在anaconda中为jupyter安装代码自动补全或代码自动提示功能,jupyter nbextensions不显示拓展,另附格式化代码插件的安装方法
操作步骤 进入命令行环境.我使用的是conda.有两种方式进入命令行. 方法1:通过anconda navigator界面,选择environments,选择对应环境名,选择open terminal ...
- [非常重要] 通过ssh的方式提交github
通过ssh的方式提交github - 重要文章!!vscode提交github 原因: github的https的clone项目报错,所以改用ssh的方式 1 本地创建ssh秘钥 目录是 .ssh 我 ...