题目


分析

首先把收费站之间化为点,那这样即是区间加和区间查询,

考虑求的应该是

\[\frac{\sum a[i]*(r-i+1)*(i-l+1)}{C(r-l+2,2)}
\]

分子可以拆成

\[a[i]*(l+r)*i-a[i]*(r+1)*(l-1)-a[i]*i*i
\]

关键是要维护\(\sum a[i],\sum a[i]*i,\sum a[i]*i*i\)

这个可以用\(\sum i=(i+1)*i/2,\sum i^2=i*(i+1)*(2*i+1)/6\)实现


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011; typedef long long lll;
struct three{lll w0,w1,w2;}w[N<<2]; int lazy[N<<2],n;
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void print(lll ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline three pup(three k1,three k2){return (three){k1.w0+k2.w0,k1.w1+k2.w1,k1.w2+k2.w2};}
inline lll C(int n){return 1ll*n*(n-1)>>1;}
inline lll calc(int n){return 1ll*n*(n+1)*(n<<1|1)/6;}
inline void ptag(int k,int l,int r,int z){
w[k].w0+=(r-l+1)*z,w[k].w1+=(C(r+1)-C(l))*z,
w[k].w2+=(calc(r)-calc(l-1))*z,lazy[k]+=z;
}
inline void update(int k,int l,int r,int x,int y,int z){
if (l==x&&r==y){ptag(k,l,r,z); return;}
rr int mid=(l+r)>>1;
if (lazy[k]) ptag(k<<1,l,mid,lazy[k]),ptag(k<<1|1,mid+1,r,lazy[k]),lazy[k]=0;
if (y<=mid) update(k<<1,l,mid,x,y,z);
else if (x>mid) update(k<<1|1,mid+1,r,x,y,z);
else update(k<<1,l,mid,x,mid,z),update(k<<1|1,mid+1,r,mid+1,y,z);
w[k]=pup(w[k<<1],w[k<<1|1]);
}
inline three query(int k,int l,int r,int x,int y){
if (l==x&&r==y) return w[k];
rr int mid=(l+r)>>1;
if (lazy[k]) ptag(k<<1,l,mid,lazy[k]),ptag(k<<1|1,mid+1,r,lazy[k]),lazy[k]=0;
if (y<=mid) return query(k<<1,l,mid,x,y);
else if (x>mid) return query(k<<1|1,mid+1,r,x,y);
else return pup(query(k<<1,l,mid,x,mid),query(k<<1|1,mid+1,r,mid+1,y));
}
signed main(){
n=iut()-1;
for (rr int m=iut();m;--m){
rr char c=getchar();
while (!isalpha(c)) c=getchar();
rr int l=iut(),r=iut()-1;
if (l>r) continue;
if (c=='C') update(1,1,n,l,r,iut());
else if (c=='Q'){
rr three Ans=query(1,1,n,l,r);
rr lll ans=Ans.w0*(r+1)*(1-l)+Ans.w1*(l+r)-Ans.w2;
rr lll ans2=C(r-l+2),GCD=__gcd(ans,ans2);
print(ans/GCD),putchar('/'),print(ans2/GCD),putchar(10);
}
}
return 0;
}

#线段树#洛谷 2221 [HAOI2012]高速公路的更多相关文章

  1. 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)

    传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...

  2. 洛谷P2221 [HAOI2012]高速公路

    线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...

  3. 线段树 洛谷P3932 浮游大陆的68号岛

    P3932 浮游大陆的68号岛 题目描述 妖精仓库里生活着黄金妖精们,她们过着快乐,却随时准备着迎接死亡的生活. 换用更高尚的说法,是随时准备着为这个无药可救的世界献身. 然而孩子们的生活却总是无忧无 ...

  4. [线段树]洛谷P5278 算术天才⑨与等差数列

    题目描述 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k ...

  5. 洛谷 P2221 [HAOI2012]高速公路

    链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) ...

  6. 区间连续长度的线段树——洛谷P2894 [USACO08FEB]酒店Hotel

    https://www.luogu.org/problem/P2894 #include<cstdio> #include<iostream> using namespace ...

  7. [Luogu 2221] HAOI2012 高速公路

    [Luogu 2221] HAOI2012 高速公路 比较容易看出的线段树题目. 由于等概率,期望便转化为 子集元素和/子集个数. 每一段l..r中,子集元素和为: \(\sum w_{i}(i-l+ ...

  8. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  9. AC日记——校门外的树 洛谷 P1047

    题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L,都种 ...

  10. 带修主席树 洛谷2617 支持单点更新以及区间kth大查询

    题目链接:https://www.luogu.com.cn/problem/P2617 参考博客:https://blog.csdn.net/dreaming__ldx/article/details ...

随机推荐

  1. Android 全面屏体验

    一.概述 Android 应用中经常会有一些要求全屏显隐状态栏导航栏的需求.通过全屏沉浸式的处理可以让应用达到更好的显示效果.在 Android 4.1 之前,只能隐藏状态栏, 在 Android4. ...

  2. 【Azure 存储服务】使用POST方式向Azure Storage Queue中插入Message的办法

    问题描述 使用POST HTTP Request, 如何向Azure Storage Queue中写入Message呢?例如使用CURL发送POST指令是否可以呢? CURL -H "Con ...

  3. 测绘线性代数(四):数学期望、协方差、PCA

    数学期望 E(X) = ∑pixi,X为所有xi的集合,pi为xi对应的概率. 通常来说,xi都是离散的,除非像高斯分布,假设xi不是离散的,才用上式. 当xi是离散的,那么: E(X) = 1 / ...

  4. 新增、修改校验逻辑使用-Validation-的group分组校验完成-2022新项目

    一.业务场景 一般在项目开发中少不了新增.修改操作,这两个操作中传递的参数中也仅仅只有一个参数是不一致的,新增操作时没有ID, 修改时有ID,其校验逻辑也只有这一个ID校验的差别.最开始自己在写代码时 ...

  5. Github登录 2FA(Two-Factor Authentication/两因素认证) 浏览器插件-已验证

    Github登录 2FA(Two-Factor Authentication/两因素认证) 浏览器插件-已验证 chrome 装下这个扩展 身份验证器 https://chromewebstore.g ...

  6. isNumber 数字正则校验 表达式

    isNumber 数字正则校验 表达式 isNumber(value) { return (/(^-?[0-9]+\.{1}\d+$)|(^-?[1-9][0-9]*$)|(^-?0{1}$)/).t ...

  7. 【图算法】构建消息传递网络教程 Creating Message Passing Networks by Pytorch-geometric

    一.背景 将卷积运算推广到不规则域通常表示为邻局聚合(neighborhood aggregation)或消息传递(neighborhood aggregation)模式. \(\mathbf{x}^ ...

  8. day01-项目介绍和功能实现

    项目练习01 1.项目介绍 这是一个简单的项目练习,用于掌握新学习的SpringBoot技术. 项目操作界面 ● 技术栈 Vue3+ElementPlus+Axios+MyBatisPlus+Spri ...

  9. oracle错误之未知的命令开头imp忽略了剩余行解决方案

    现象:执行imp命令如下: imp username/password@orcl full=y  file=C:\optimove.dmp ignore=y  解决方案: imp 命令是在dos提示符 ...

  10. 《TencentNCNN系列》 之param文件(网络结构文件)格式分析

    PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(Bl ...