另一个学习文档http://doc.codingdict.com/tensorflow/tfdoc/tutorials/overview.html

定义 add_layer()

https://mofanpy.com/tutorials/machine-learning/tensorflow/add-layer/

import tensorflow as tf

def add_layer(inputs,in_size,out_size,activation_function=None): #定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的大小、输出的大小和激励函数,我们设定默认的激励函数是None。
# 因为在生成初始参数时,随机变量(normal distribution)会比全部为0要好很多,所以我们这里的weights为一个in_size行, out_size列的随机变量矩阵。
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
# 机器学习中推荐biases不为0,所以加个0.1
biases = tf.Variable(tf.zeros([1,out_size])+ 0.1)
# 定义Wx_plus_b, 即神经网络未激活的值。其中,tf.matmul()是矩阵的乘法。
Wx_plus_b = tf.matmul(inputs, Weights) + biases
# 当activation_function——激励函数为None时,输出就是当前的预测值——Wx_plus_b,
# 不为None时,就把Wx_plus_b传到activation_function()函数中得到输出。
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b) return outputs

建造神经网络

这次提到了怎样建造一个完整的神经网络,包括添加神经层,计算误差,训练步骤,判断是否在学习

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt def add_layer(inputs,in_size,out_size,activation_function=None): #定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的大小、输出的大小和激励函数,我们设定默认的激励函数是None。
# 因为在生成初始参数时,随机变量(normal distribution)会比全部为0要好很多,所以我们这里的weights为一个in_size行, out_size列的随机变量矩阵。
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
# 机器学习中推荐biases不为0,所以加个0.1
biases = tf.Variable(tf.zeros([1,out_size])+ 0.1)
# 定义Wx_plus_b, 即神经网络未激活的值。其中,tf.matmul()是矩阵的乘法。
Wx_plus_b = tf.matmul(inputs, Weights) + biases
# 当activation_function——激励函数为None时,输出就是当前的预测值——Wx_plus_b,
# 不为None时,就把Wx_plus_b传到activation_function()函数中得到输出。
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b) return outputs # 虚构一个所需的数据
# 这里的x_data和y_data并不是严格的一元二次函数的关系,
# 因为我们多加了一个noise,这样看起来会更像真实情况。
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # y=x^2 -0.5 # 利用占位符定义我们所需的神经网络的输入。 tf.placeholder()就是代表占位符,
# 这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1。
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1]) # 建立2个隐藏层,输入层只有一个特征,建立2个隐藏层,每层10个神经元,输出也是一个特征,激励函数用的tf.nn.relu,tf.nn.tanh.激励函数有很多比如tf.nn.sigmoid
l1 = add_layer(xs, 1, 10,activation_function=tf.nn.relu)
l2 = add_layer(l1, 10, 10,activation_function=tf.nn.tanh) prediction = add_layer(l2,10,1,activation_function=None) # 输出特征 # 损失函数
# 计算预测值prediction和真实值的误差,对二者差的平方求和再取平均。
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])) #reduction_indices参数的值为1的时候,是第1维对应位置相加 # 练习
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #训练,采用梯度下降法,学习率为0.1优化的步长取值,学习方向减小loss # 初始化变量
init = tf.global_variables_initializer() # 上面所有的都还没有运行
# 定义Session,并用 Session 来执行 init 初始化步骤。
# (注意:在tensorflow中,只有session.run()才会执行我们定义的运算。)
sess = tf.Session()
sess.run(init) # 这里运行了init #可视化
# Pycharm可以在【Settings】-->【Python Scientific】-->取消“Show plots……”的勾
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion() # 使图像可动态
plt.show() # 这里,我们让机器学习1000次。机器学习的内容是train_step,
# 用 Session 来 run 每一次 training 的数据,逐步提升神经网络的预测准确性。
# (注意:当运算要用到placeholder时,就需要feed_dict这个字典来指定输入。)
for i in range(1000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
# 每50步我们输出一下机器学习的误差。
# 每隔50次训练刷新一次图形,用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。
if i % 50 == 0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data})) try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs:x_data})
lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
plt.pause(0.1) plt.pause(0) # 完成运行后图片不消失

加速神经网络训练 (Speed Up Training)

Tensorflow 中的优化器会有很多不同的种类。最基本, 也是最常用的一种就是GradientDescentOptimizer

在Google搜索中输入“tensorflow optimizer可以看到Tensorflow提供了7种优化器

各种优化器的特点https://mofanpy.com/tutorials/machine-learning/tensorflow/intro-speed-up-learning/

莫烦tensorflow学习记录 (3)建造我们第一个神经网络的更多相关文章

  1. 莫烦theano学习自修第十天【保存神经网络及加载神经网络】

    1. 为何保存神经网络 保存神经网络指的是保存神经网络的权重W及偏置b,权重W,和偏置b本身是一个列表,将这两个列表的值写到列表或者字典的数据结构中,使用pickle的数据结构将列表或者字典写入到文件 ...

  2. 莫烦pytorch学习笔记(七)——Optimizer优化器

    各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...

  3. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  4. 莫烦PyTorch学习笔记(五)——模型的存取

    import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...

  5. 【tensorflow】tensorflow学习记录——安装、第一个程序篇

    机器学习,人工智能往后肯定是一个趋势,现阶段有必要研究一两个人工智能的工具,以免自己技术落伍,其中tensorflow就是一个很不错的项目,有谷歌开发后开源,下面开始学习安装和使用 安装篇: 很不幸, ...

  6. TensorFlow学习记录(一)

    windows下的安装: 首先访问https://storage.googleapis.com/tensorflow/ 找到对应操作系统下,对应python版本,对应python位数的whl,下载. ...

  7. 莫烦scikit-learn学习自修第四天【内置训练数据集】

    1. 代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from sklearn import datasets from sklearn.linea ...

  8. 莫烦scikit-learn学习自修第一天【scikit-learn安装】

    1. 机器学习的分类 (1)有监督学习(包括分类和回归) (2)无监督学习(包括聚类) (3)强化学习 2. 安装 (1)安装python (2)安装numpy >=1.6.1 (3)安装sci ...

  9. 莫烦keras学习自修第二天【backend配置】

    keras的backend包括tensorflow和theano,tensorflow只能在macos和linux上运行,theano可以在windows,macos及linux上运行 1. 使用配置 ...

  10. 莫烦theano学习自修第九天【过拟合问题与正规化】

    如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另 ...

随机推荐

  1. Mysql之备份工具

    一.备份工具 1. mysqldump mysql服务自带的备份工具:mysqldump备份方式是采用的逻辑备份,其最大的缺陷是备份和恢复速度较慢,如果数据库大于50G,mysqldump备份就不太适 ...

  2. Mysql之SQL语句初级用法

    前言 本文通过简单的示例去了解Mysql的DDL.DML.DCL的语句用法. 一.DDL语句 DDL(Data Definition Language)语句: 数据定义语言,主要是进行定义/改变表的结 ...

  3. c#程序员必学清单

    必读书目:1. "Effective C#: 50 Specific Ways to Improve Your C#" by Bill Wagner2. "CLR via ...

  4. 【Oracle】 管道函数pipelined function简单的使用

    Oracle 管道函数pipelined function简单的使用 如果在函数(function)中加关键字 pipelined,就表明这是一个oracle管道函数,其返回值类型必为 集合,体现出来 ...

  5. CF1857G Counting Graphs 题解

    题目描述 给定一棵最小生成树,求有多少张图的最小生成树是给定的树,并且这张图的所有边边权不超过 \(S\). 思路 考虑在最小生成树中加边. 我们回顾一下 Kruskal 的过程: 找到没被用过的,最 ...

  6. 使用 Arthas 排查 SpringBoot 诡异耗时的 Bug

    简介: 公司有个渠道系统,专门对接三方渠道使用,没有什么业务逻辑,主要是转换报文和参数校验之类的工作,起着一个承上启下的作用.最近,在优化接口的响应时间,优化了代码之后,但是时间还是达不到要求:有一个 ...

  7. PolarDB 并行查询的前世今生

    简介:本文会深入介绍PolarDB MySQL在并行查询这一企业级查询加速特性上做的技术探索.形态演进和相关组件的实现原理,所涉及功能随PolarDB MySQL 8.0.2版本上线. ​ 作者 | ...

  8. KubeDL HostNetwork:加速分布式训练通信效率

    ​简介:ubeDL 为分布式训练作业带来了 HostNetwork 网络模式,支持计算节点之间通过宿主机网络相互通信以提升网络性能,同时适应 RDMA/SCC 等新型高性能数据中心架构的网络环境,此外 ...

  9. SpringMVC学习二(日期参数/数据保存/重定向)

    接受的参数为日期类型 controller进行数据保存 Controller如何进行重定向跳转 1.对于前端页面传来日期类型的数据时如何进行处理,有两种方法 1.1在对应的Controller中插入代 ...

  10. 一则current日志损坏的数据库恢复实例,隐藏参数的使用

    场景 之前写了一篇文章,是redo日志全部丢失的情况下,数据库实例恢复的方式.但是,这次特殊在,实例恢复失败的情况下.非常规打开数据库(数据库已经不一致了,但是可以通过expdp导出,导出重要的数据) ...