Ascend C sqrt算子实战
摘要:编写一个Ascend C的sqrt算子,并通过内核调用方式在cpu和npu模式下进行验证。
本文分享自华为云社区《【2023 · CANN训练营第一季】——Ascend C sqrt算子实战》,作者:dayao。
前言
编写一个Ascend C的sqrt算子,并通过内核调用方式在cpu和npu模式下进行验证。在训练营沙箱环境下,cpu模式工作正常结果正确。
一、概述
先简单回顾下TIK C++算子矢量编程的流程和实现。
矢量算子开发流程如下:

主要工作内容有:
1、算子分析:确定输入输出,确定数学表达式以及底层实现接口,确定核函数定义。
2、算子类的实现:实现init()和process()。init()完成内存初始化,实质上体现的是多核运行,和单核数据切分以及是否开启double buffer优化;Process()实现的是CopyIn,Compute、CopyOut三个流水任务。
3、算子验证:通过核函数的内核调用符的方式调用算子,计算出结果,并于使用相同输入用numpy计算结果进行比对,误差在一定范围内即可。实际应用中,需要使用原有框架的算子进行计算精度比对。
二、算子分析
算子定义如下:假定仍是8个逻辑核。

查询TIK C++的API可知,可以使用(TIK C++ API/矢量计算/单目/Sqrt,采用2级接口)完成运算,得到最终结果。

三、代码分析
直接在训练营课程提供的add_tik2算子工程上修改。代码地址:https://gitee.com/zgx950813/samples/tree/master/tik2_demo/kernel_samples/kernel_add_sample
修改代码目录结构如下:CMakeLists.txt和data_utils.h未作修改,编译和执行脚本run.sh只改了计算结果与真值比对部分。

一)、核函数定义
与例程相比,输入参数只有x。
extern "C" __global__ __aicore__ void sqrt_tik2(__gm__ uint8_t* x, __gm__ uint8_t* z)
{
KernelSqrt op;
op.Init(x, z);
op.Process();
}
二)、算子类
实现方式与add例程类似。init()函数里初始化内存:x,y的Global Memory ;流水线任务通讯内存;Process()实现流水线任务;按范式编写CopyIn、Compute、CopyOut。与add例程最大差异是,在compute函数中,调用sqrt的2类接口API实现计算。
class KernelSqrt {
public:
__aicore__ inline KernelSqrt() {}
__aicore__ inline void Init(__gm__ uint8_t* x, __gm__ uint8_t* z)
{
// get start index for current core, core parallel
xGm.SetGlobalBuffer((__gm__ half*)x + block_idx * BLOCK_LENGTH, BLOCK_LENGTH);
zGm.SetGlobalBuffer((__gm__ half*)z + block_idx * BLOCK_LENGTH, BLOCK_LENGTH);
// pipe alloc memory to queue, the unit is Bytes
pipe.InitBuffer(inQueueX, BUFFER_NUM, TILE_LENGTH * sizeof(half));
pipe.InitBuffer(outQueueZ, BUFFER_NUM, TILE_LENGTH * sizeof(half));
}
__aicore__ inline void Process()
{
// loop count need to be doubled, due to double buffer
constexpr int32_t loopCount = TILE_NUM * BUFFER_NUM;
// tiling strategy, pipeline parallel
for (int32_t i = 0; i < loopCount; i++) {
CopyIn(i);
Compute(i);
CopyOut(i);
}
}
private:
__aicore__ inline void CopyIn(int32_t progress)
{
// alloc tensor from queue memory
LocalTensor<half> xLocal = inQueueX.AllocTensor<half>();
// copy progress_th tile from global tensor to local tensor
DataCopy(xLocal, xGm[progress * TILE_LENGTH], TILE_LENGTH);
// enque input tensors to VECIN queue
inQueueX.EnQue(xLocal);
}
__aicore__ inline void Compute(int32_t progress)
{
// deque input tensors from VECIN queue
LocalTensor<half> xLocal = inQueueX.DeQue<half>();
LocalTensor<half> zLocal = outQueueZ.AllocTensor<half>();
// call Sqrt instr for computation
Sqrt(zLocal, xLocal, TILE_LENGTH);
// enque the output tensor to VECOUT queue
outQueueZ.EnQue<half>(zLocal);
// free input tensors for reuse
inQueueX.FreeTensor(xLocal);
}
__aicore__ inline void CopyOut(int32_t progress)
{
// deque output tensor from VECOUT queue
LocalTensor<half> zLocal = outQueueZ.DeQue<half>();
// copy progress_th tile from local tensor to global tensor
DataCopy(zGm[progress * TILE_LENGTH], zLocal, TILE_LENGTH);
// free output tensor for reuse
outQueueZ.FreeTensor(zLocal);
}
private:
TPipe pipe;
// create queues for input, in this case depth is equal to buffer num
TQue<QuePosition::VECIN, BUFFER_NUM> inQueueX;
// create queue for output, in this case depth is equal to buffer num
TQue<QuePosition::VECOUT, BUFFER_NUM> outQueueZ;
GlobalTensor<half> xGm, zGm;
};
三)、核函数调用
1、在CPU模式下,通过ICPU_RUN_KF调用
ICPU_RUN_KF(sqrt_tik2, blockDim, x, z); // use this macro for cpu debug
2、在NPU模式下,通过<<<>>>调用
#ifndef __CCE_KT_TEST__
// call of kernel function
void sqrt_tik2_do(uint32_t blockDim, void* l2ctrl, void* stream, uint8_t* x, uint8_t* z)
{
sqrt_tik2<<<blockDim, l2ctrl, stream>>>(x, z);
}
#endif
由于<<<>>>,只能在NPU模式下调用,所以需要用条件编译,不在CPU调试模式下有效。在调用sqrt_tik2_do,需要按ascendcl应用编程的要求进行。
3、调用代码
通过“__CCE_KT_TEST__”宏区分CPU和NPU模式。
int32_t main(int32_t argc, char* argv[])
{
size_t inputByteSize = 8 * 2048 * sizeof(uint16_t); // uint16_t represent half
size_t outputByteSize = 8 * 2048 * sizeof(uint16_t); // uint16_t represent half
uint32_t blockDim = 8;
#ifdef __CCE_KT_TEST__
uint8_t* x = (uint8_t*)tik2::GmAlloc(inputByteSize);
uint8_t* z = (uint8_t*)tik2::GmAlloc(outputByteSize);
ReadFile("./input/input_x.bin", inputByteSize, x, inputByteSize);
// PrintData(x, 16, printDataType::HALF);
ICPU_RUN_KF(sqrt_tik2, blockDim, x, z); // use this macro for cpu debug
// PrintData(z, 16, printDataType::HALF);
WriteFile("./output/output_z.bin", z, outputByteSize);
tik2::GmFree((void *)x);
tik2::GmFree((void *)z);
#else
aclInit(nullptr);
aclrtContext context;
aclError error;
int32_t deviceId = 0;
aclrtCreateContext(&context, deviceId);
aclrtStream stream = nullptr;
aclrtCreateStream(&stream);
uint8_t *xHost, *zHost;
uint8_t *xDevice, *zDevice;
aclrtMallocHost((void**)(&xHost), inputByteSize);
aclrtMallocHost((void**)(&zHost), outputByteSize);
aclrtMalloc((void**)&xDevice, inputByteSize, ACL_MEM_MALLOC_HUGE_FIRST);
aclrtMalloc((void**)&zDevice, outputByteSize, ACL_MEM_MALLOC_HUGE_FIRST);
ReadFile("./input/input_x.bin", inputByteSize, xHost, inputByteSize);
// PrintData(xHost, 16, printDataType::HALF);
aclrtMemcpy(xDevice, inputByteSize, xHost, inputByteSize, ACL_MEMCPY_HOST_TO_DEVICE);
sqrt_tik2_do(blockDim, nullptr, stream, xDevice, zDevice); // call kernel in this function
aclrtSynchronizeStream(stream);
aclrtMemcpy(zHost, outputByteSize, zDevice, outputByteSize, ACL_MEMCPY_DEVICE_TO_HOST);
// PrintData(zHost, 16, printDataType::HALF);
WriteFile("./output/output_z.bin", zHost, outputByteSize);
aclrtFree(xDevice);
aclrtFree(zDevice);
aclrtFreeHost(xHost);
aclrtFreeHost(zHost);
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
#endif
return 0;
}
四)、基准数据生成——sqrt_tik2.py
使用numpy生成input_x和基准结果golden。
import numpy as np
def gen_golden_data_simple():
input_x = np.random.uniform(0, 100, [8, 2048]).astype(np.float16)
golden = np.sqrt(input_x).astype(np.float16)
input_x.tofile("./input/input_x.bin")
golden.tofile("./output/golden.bin")
if __name__ == "__main__":
gen_golden_data_simple()
五)、计算结果比较
使用numpy的allclose()函数比较算子计算与基准数据的结果。实际上由于npu模式编译出错,实际未执行改函数进行比较。CPU模式下,算子计算出的结果与基准golden数据完全一致,两者的md5相同。
四、编译运行
本次课程提供了沙箱运行环境,想个办法把代码搞进去。

一)、配置环境变量

二)、CPU模式
cpu模式顺利编译运行,结果与对比组完全一致。

三)、NPU模式
npu模式下编译报错,因为沙箱时间有限,以后有机会再研究。

Ascend C sqrt算子实战的更多相关文章
- Spark算子---实战应用
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat --- ...
- Spark GraphX图计算核心算子实战【AggreagteMessage】
一.简介 参考博客:https://www.cnblogs.com/yszd/p/10186556.html 二.代码实现 package graphx import org.apache.log4j ...
- 6.RDD算子实战
from pyspark import SparkContext,SparkConf import sys if __name__ == '__main__': if len(sys.argv) != ...
- Ascend Pytorch算子功能验证
Ascend Pytorch算子功能验证 编写测试用例 以add算子为例,测试脚本文件命名为:add_testcase.py.以下示例仅为一个简单的用例实现,具体算子的实现,需要根据算子定义进行完整的 ...
- Ascend Pytorch算子适配层开发
Ascend Pytorch算子适配层开发 适配方法 找到和PyTorch算子功能对应的NPU TBE算子,根据算子功能计算出输出Tensor的size,再根据TBE算子原型构造对应的input/ou ...
- 数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波
拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com impor ...
- Ceres Solver: 高效的非线性优化库(二)实战篇
Ceres Solver: 高效的非线性优化库(二)实战篇 接上篇: Ceres Solver: 高效的非线性优化库(一) 如何求导 Ceres Solver提供了一种自动求导的方案,上一篇我们已经看 ...
- 《TensorFlow实战》中AlexNet卷积神经网络的训练中
TensorFlow实战中AlexNet卷积神经网络的训练 01 出错 TypeError: as_default() missing 1 required positional argument: ...
- flink实时数仓从入门到实战
第一章.flink实时数仓入门 一.依赖 <!--Licensed to the Apache Software Foundation (ASF) under oneor more contri ...
- AI实战分享 | 基于CANN的辅助驾驶应用案例
摘要:什么是辅助驾驶?简而言之,就是借助汽车对周围环境的自动感知和分析,让驾驶员预先察觉可能发生的危险,有效增加汽车驾驶的舒适性和安全性. 导读:基于昇腾AI异构计算架构CANN的辅助驾驶AI应用实战 ...
随机推荐
- Windows10 穿越火线手感和Windows7不一样
如果是穿越火线或者其他FPS玩家,应该会感觉Win10和WIin7两者手感会有一定的区别.为什么升级了系统变菜了?心理作用?其实确实和系统有关系哦.我从Windows7升级到Windows10玩穿越火 ...
- SQL优化---慢SQL优化
于2023.3.17日重写,之前写的还是太八股文太烂了一点逻辑都没有,这次重新写了之后,感觉数据库优化还是很有必要的,之前觉得不必要是我年轻了. 一.如何定位慢SQL语句 1.通过慢查询日志查询已经执 ...
- 普冉PY32系列(七) SOP8, SOP10和SOP16封装的PY32F003/PY32F002A管脚复用
目录 普冉PY32系列(一) PY32F0系列32位Cortex M0+ MCU简介 普冉PY32系列(二) Ubuntu GCC Toolchain和VSCode开发环境 普冉PY32系列(三) P ...
- AcWing 1902. 马拉松
题目链接 每次路程改变只对前后两点间距离有影响,因此每次都判断当前三个点之间的距离之和与去掉中间点的距离哪个更优即可,最后取最大值作为结果输出. #include<iostream> #i ...
- Excel或数据库快速生成GUID
一般一些开发软件或者网站可以直接生成guid, 比如:https://www.iamwawa.cn/guid.html 但是在某些场景下,经常在一些excel或者数据库操作需要快速生成指定格式的gui ...
- Dijkstra(迪杰斯特拉)算法C++实现&讲解
Dijkstra迪杰斯特拉算法及C++实现 Dijkstra算法是典型的最短路径路由算法,用来计算一个节点到其他所有节点的最短路径.算法的基本思想和流程是:1. 初始化出发点到其它各点的距离dist[ ...
- 图与网络分析—R实现(三)
最小生成树 (Minimum Spanning Tree) 应该大家都不陌生,Spanning 有跨越的意思,生成树一般来说每个节点都能访问到别的节点,是一个连通树.所以,一般考虑无向图里去造生成树. ...
- Docker容器内不能联网的6种解决方案
Docker容器内不能联网的6种解决方案 注:下面的方法是在容器内能ping通公网IP的解决方案,如果连公网IP都ping不通,那主机可能也上不了网(尝试ping 8.8.8.8) 1.使用–net: ...
- dev-tools
Maven配置依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactId& ...
- LeeCode 433 最小基因变化
LeeCode 433 最小基因变化 题目描述: 基因序列可以表示为一条由 8 个字符组成的字符串,其中每个字符都是 'A'.'C'.'G' 和 'T' 之一. 假设我们需要调查从基因序列 start ...