变分自编码器(VAE)公式推导
论文原文:Auto-Encoding Variational Bayes [OpenReview (ICLR 2014) | arXiv]
本文记录了我在学习 VAE 过程中的一些公式推导和思考。如果你希望从头开始学习 VAE,建议先看一下苏剑林的博客(本文末尾有链接)。
VAE 的整体框架
VAE 认为,随机变量 \(\boldsymbol{x} \sim p(\boldsymbol{x})\) 由两个随机过程得到:
- 根据先验分布 \(p(\boldsymbol{z})\) 生成隐变量 \(\boldsymbol{z}\)。
- 根据条件分布 \(p(\boldsymbol{x} | \boldsymbol{z})\) 由 \(\boldsymbol{z}\) 得到 \(\boldsymbol{x}\)。
于是 \(p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})\) 就是我们所需要的生成模型。
一种朴素的想法是:先用随机数生成器生成隐变量 \(\boldsymbol{z}\),然后用 \(p(\boldsymbol{x} | \boldsymbol{z})\) 从 \(\boldsymbol{z}\) 中生成出(或者说重构出) \(\boldsymbol{x}\),通过最小化重构损失来训练模型。这个想法的问题在于:我们无法找到生成的样本与原始样本之间的对应关系,重构损失算不了,无法训练。
VAE 的做法是引入后验分布 \(p(\boldsymbol{z} | \boldsymbol{x})\),训练过程变为:
- 采样一批原始样本 \(\boldsymbol{x}\)。
- 用 \(p(\boldsymbol{z} | \boldsymbol{x})\) 获得每个样本 \(\boldsymbol{x}\) 对应的隐变量 \(\boldsymbol{z}\)。
- 用 \(p(\boldsymbol{x} | \boldsymbol{z})\) 从隐变量 \(\boldsymbol{z}\) 中重构出 \(\boldsymbol{x}\),通过最小化重构损失来训练模型。
从这个角度来看,\(p(\boldsymbol{z} | \boldsymbol{x})\) 相当于编码器,\(p(\boldsymbol{x} | \boldsymbol{z})\) 相当于解码器,训练结束后只需要保留解码器 \(p(\boldsymbol{x} | \boldsymbol{z})\) 即可。
除了重构损失以外,VAE 还有一项 KL 散度损失,希望近似的后验分布 \(q(\boldsymbol{z} | \boldsymbol{x})\) 尽量接近先验分布 \(p(\boldsymbol{z})\),即最小化二者的 KL 散度。
变分下界的推导
现有 \(N\) 个由分布 \(P(\boldsymbol{x}; \boldsymbol{\theta})\) 生成的样本 \(\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}\),我们可以使用极大似然估计从这些样本中估计出分布的参数 \(\boldsymbol{\theta}\),即
\boldsymbol{\theta}
& = \operatorname*{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{x}^{(1)}; \boldsymbol{\theta}) \cdots p(\boldsymbol{x}^{(N)}; \boldsymbol{\theta}) \\
& = \operatorname*{argmax}_{\boldsymbol{\theta}} \ln(p(\boldsymbol{x}^{(1)}; \boldsymbol{\theta}) \cdots p(\boldsymbol{x}^{(N)}; \boldsymbol{\theta})) \\
& = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^n \ln p(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}).
\end{aligned}
\]
后验分布 \(p(\boldsymbol{z} | \boldsymbol{x}) = \frac{p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})}{p(\boldsymbol{x})} = \frac{p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})}{\int_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z}}\) 是 intractable 的,因为分母处的边缘分布 \(p(\boldsymbol{x})\) 积不出来。具体来说,联合分布 \(p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z})p(\boldsymbol{x} | \boldsymbol{z})\) 的表达式非常复杂,\(\int_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z}) \mathrm{d}\boldsymbol{z}\) 这个积分找不到解析解。
需要使用变分推断解决后验分布无法计算的问题。我们使用一个形式已知的分布 \(q(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\phi})\) 来近似后验分布 \(p(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\),于是有
\log p(\boldsymbol{x}^{(i)})
& = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) - \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \log p(\boldsymbol{x}^{(i)}) \cdot 1 \\
& = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log\frac{q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}{p(\boldsymbol{z}|\boldsymbol{x}^{(i)})} \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \log p(\boldsymbol{x}^{(i)}) \cdot \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\mathrm{d}\boldsymbol{z} \\
& = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log p(\boldsymbol{x}^{(i)}) \mathrm{d}\boldsymbol{z} \\
& = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)})] \mathrm{d}\boldsymbol{z} \\
& = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log (p(\boldsymbol{z}|\boldsymbol{x}^{(i)})p(\boldsymbol{x}^{(i)}))] \mathrm{d}\boldsymbol{z} \\
& = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\
& = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \\
& = \mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z}|\boldsymbol{x}^{(i)})] + L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}) \\
& \geq L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)}).
\end{aligned}
\]
利用 KL 散度大于等于 0 这一特性,我们得到了对数似然 \(\log p(\boldsymbol{x}^{(i)})\) 的一个下界 \(L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)})\),于是可以将最大化对数似然改为最大化这个下界。
这个下界可以进一步写成
L(\boldsymbol{\theta}, \boldsymbol{\phi}; \boldsymbol{x}^{(i)})
& = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{x}^{(i)}, \boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\
& = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log (p(\boldsymbol{z})p(\boldsymbol{x}^{(i)}|\boldsymbol{z}))] \mathrm{d}\boldsymbol{z} \\
& = \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[-\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) + \log p(\boldsymbol{z}) + \log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\
& = -\int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})[\log q(\boldsymbol{z}|\boldsymbol{x}^{(i)}) - \log p(\boldsymbol{z})] \mathrm{d}\boldsymbol{z} + \int_{\boldsymbol{z}} q(\boldsymbol{z}|\boldsymbol{x}^{(i)})\log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})] \mathrm{d}\boldsymbol{z} \\
& = -\mathrm{KL}[q(\boldsymbol{z}|\boldsymbol{x}^{(i)}), p(\boldsymbol{z})] + \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}|\boldsymbol{x}^{(i)})}[\log p(\boldsymbol{x}^{(i)}|\boldsymbol{z})]. \\
\end{aligned}
\]
其中的第一项是 KL 散度损失,第二项是重构损失。
KL 散度损失
使用标准正态分布作为先验分布,即 \(p(\boldsymbol{z}) = N(\boldsymbol{z}; \boldsymbol{0}, \boldsymbol{I})\)。
使用一个由 MLP 的输出来参数化的正态分布作为近似后验分布,即 \(q(\boldsymbol{z}|\boldsymbol{x}^{(i)}; \boldsymbol{\phi}) = N(\boldsymbol{z}; \boldsymbol{\mu}(\boldsymbol{x}^{(i)}; \boldsymbol{\phi}), \boldsymbol{\sigma}^2(\boldsymbol{x}^{(i)}; \boldsymbol{\phi})\boldsymbol{I})\)。
选择正态分布的好处在于 KL 散度的这个积分可以写出解析解,训练时直接按照公式计算即可,无需通过采样的方式来算积分。
由于我们选择的是各分量独立的多元正态分布,因此只需要推导一元正态分布的情形即可:
\mathrm{KL}[N(z; \mu, \sigma^2), N(z; 0, 1)]
& = \int_z N(z; \mu, \sigma^2)\log\frac{N(z; \mu, \sigma^2)}{N(z; 0, 1)} \mathrm{d}z \\
& = \int_z N(z; \mu, \sigma^2) \log\frac{\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(z - \mu)^2}{2\sigma^2}\right)}{\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{z^2}{2}\right)} \mathrm{d}z \\
& = \int_z N(z; \mu, \sigma^2) \log\left(\frac{1}{\sqrt{\sigma^2}}\exp\left(\frac{1}{2}\left(-\frac{(z - \mu^2)^2}{\sigma^2} + z^2\right)\right)\right) \mathrm{d}z \\
& = \frac{1}{2}\int_z N(z; \mu, \sigma^2) \left(-\log\sigma^2 - \frac{(z - \mu)^2}{\sigma^2} + z^2\right)\mathrm{d}z \\
& = \frac{1}{2}\left(-\log\sigma^2\int_z N(z; \mu, \sigma^2) \mathrm{d}z - \frac{1}{\sigma^2}\int_z N(z; \mu, \sigma^2)(z - \mu)^2\mathrm{d}z + \int_z N(z; \mu, \sigma^2)z^2\mathrm{d}z\right) \\
& = \frac{1}{2}\left(-\log\sigma^2 \cdot 1 - \frac{1}{\sigma^2} \cdot \sigma^2 + \mu^2 + \sigma^2\right) \\
& = \frac{1}{2}(-\log\sigma^2 - 1 + \mu^2 + \sigma^2).
\end{aligned}
\]
解释一下倒数第三行的三个积分:
- \(\int_z N(z; \mu, \sigma^2) \mathrm{d}z\) 是概率密度函数的积分,也就是 1。
- \(\int_z N(z; \mu, \sigma^2)(z - \mu)^2\mathrm{d}z\) 是方差的定义,也就是 \(\sigma^2\)。
- \(\int_z N(z; \mu, \sigma^2)z^2\mathrm{d}z\) 是正态分布的二阶矩,结果为 \(\mu^2 + \sigma^2\)。
重构损失
伯努利分布模型
当 \(\boldsymbol{x}\) 是二值向量时,可以用伯努利分布(两点分布)来建模 \(p(\boldsymbol{x}|\boldsymbol{z})\),即认为向量 \(\boldsymbol{x}\) 的每个维度都服从对应的相互独立的伯努利分布。使用一个 MLP 来计算各维度所对应的伯努利分布的参数,第 \(i\) 维伯努利分布的参数为 \(y_i = \boldsymbol{y}(\boldsymbol{z})_i\),于是有
\]
\]
其中 \(D\) 表示向量 \(\boldsymbol{x}\) 的维度。可见此时最大化 \(\log p(\boldsymbol{x}|\boldsymbol{z})\) 等价于最小化交叉熵损失。
正态分布模型
当 \(\boldsymbol{x}\) 是实值向量时,可以用正态分布来建模 \(p(\boldsymbol{x}|\boldsymbol{z})\)。使用一个 MLP 来计算正态分布的参数,于是有
p(\boldsymbol{x}|\boldsymbol{z})
& = N(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\sigma}^2\boldsymbol{I}) \\
& = \prod_{i=1}^D N(x_i; \mu_i, \sigma_i^2) \\
& = \left(\prod_{i=1}^D\frac{1}{\sqrt{2\pi}\sigma_i}\right)\exp\left(\sum_{i=1}^D-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right),
\end{aligned}
\]
\]
很多时候我们会假设 \(\sigma_i^2\) 是一个常数,于是 MLP 只需要输出均值参数 \(\boldsymbol{\mu}\) 即可。此时有
\]
可见此时最大化 \(\log p(\boldsymbol{x}|\boldsymbol{z})\) 等价于最小化 MSE 损失。
重参数化技巧
需要使用重参数化技巧解决采样 \(z\) 时不可导的问题。解决的思路是先从无参数分布中采样一个 \(\varepsilon\),再通过变换得到 \(z\)。
从 \(N(\mu, \sigma^2)\) 中采样一个 \(z\),相当于先从 \(N(0, 1)\) 中采样一个 \(\varepsilon\),然后令 \(z = \mu + \varepsilon\cdot\sigma\)。
相关知识
技巧,通过取对数把乘除变成加减:
\]
随机变量的函数的期望:
\]
利用此公式可以将积分改写成期望的形式,这样就可以用采样的方式计算积分了(蒙特卡罗积分法)。
条件概率密度的定义:
\]
此处的 \(p\) 并不是概率而是概率密度函数,但是这个公式在形式上跟条件概率公式是一样的。
参考资料
苏剑林的 VAE 系列博客:
15 分钟了解变分推理:
变分自编码器(VAE)公式推导的更多相关文章
- 4.keras实现-->生成式深度学习之用变分自编码器VAE生成图像(mnist数据集和名人头像数据集)
变分自编码器(VAE,variatinal autoencoder) VS 生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以 ...
- 变分推断到变分自编码器(VAE)
EM算法 EM算法是含隐变量图模型的常用参数估计方法,通过迭代的方法来最大化边际似然. 带隐变量的贝叶斯网络 给定N 个训练样本D={x(n)},其对数似然函数为: 通过最大化整个训练集的对数边际似然 ...
- 再谈变分自编码器VAE:从贝叶斯观点出发
链接:https://kexue.fm/archives/5343
- (转) 变分自编码器(Variational Autoencoder, VAE)通俗教程
变分自编码器(Variational Autoencoder, VAE)通俗教程 转载自: http://www.dengfanxin.cn/?p=334&sukey=72885186ae5c ...
- 变分自编码器(Variational Autoencoder, VAE)通俗教程
原文地址:http://www.dengfanxin.cn/?p=334 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoints),每个数据也称为数据点.我们假定 ...
- VAE变分自编码器
我在学习VAE的时候遇到了很多问题,很多博客写的不太好理解,因此将很多内容重新进行了整合. 我自己的学习路线是先学EM算法再看的变分推断,最后学VAE,自我感觉这个线路比较好理解. 一.首先我们来宏观 ...
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- VAE变分自编码器公式推导
VAE变分推导依赖数学公式 (1)贝叶斯公式:\(p(z|x) = \frac{p(x|z)p(z)}{p(x)}\) (2)边缘概率公式:\(p(x) =\int{p(x,z)}dz\) (3)KL ...
- 变分自编码器(Variational auto-encoder,VAE)
参考: https://www.cnblogs.com/huangshiyu13/p/6209016.html https://zhuanlan.zhihu.com/p/25401928 https: ...
- 基于变分自编码器(VAE)利用重建概率的异常检测
本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立 ...
随机推荐
- pandas之loc/iloc操作
在数据分析过程中,很多时候需要从数据表中提取出相应的数据,而这么做的前提是需要先"索引"出这一部分数据.虽然通过 Python 提供的索引操作符"[]"和属性操 ...
- 新手小白需要了解的 Go 基础细节杂谈
今日记录一下 学习 golang 这门语言遇到的一些比较特殊的细节,供大家参考. 所以,在我们输出内容的时候,可以包含很多的非 ASCII 码字符.实际上,Go 是天生支持 UTF-8 的,任何字符都 ...
- UnrealEngine - 网络同步入门
1 网络同步机制 UE 提供了强大的网络同步机制: RPC :可以在本地调用,对端执行 属性同步:标记一个属性为 UPROPERTY(Replicated) 就可以自动将其修改后的值同步到客户端 移动 ...
- PyTorch实践模型训练(Torchvision)
模型训练的开发过程可以看作是一套完整的生产流程,这些环节包括: 数据读取.网络设计.优化方法与损失函数的选择以及一些辅助的工具等,TorchVision是一个和PyTorch配合使用的Python包, ...
- 手写 HashSet的底层 和 迭代器
1 package Test.CollectionIterator; 2 import java.util.Iterator; 3 public class MyHashSet2<E> i ...
- 使用Java接入小程序订阅消息!
更新完微信服务号的模板消息之后,我又赶紧把微信小程序的订阅消息给实现了!之前我一直以为微信小程序也是要企业才能申请,没想到小程序个人就能申请. 消息推送平台推送下发[邮件][短信][微信服务号][微信 ...
- 在Linux上安装redis7
1.检测虚拟机环境 1.1 bit检测命令:getconf LONG_BIT(建议使用64bit做开发) 1.2 gcc环境检测:gcc -v 如果不具备gcc环境,则使用yum -y install ...
- 解密Elasticsearch:深入探究这款搜索和分析引擎
作者:京东保险 管顺利 开篇 最近使用Elasticsearch实现画像系统,实现的dmp的数据中台能力.同时调研了竞品的架构选型.以及重温了redis原理等.特此做一次es的总结和回顾.网上没看到有 ...
- golang基础面试题,不完整
启动流程 Q.go的init函数是什么时候执行的? Q.多个init函数执行顺序能保证吗? Q.go init 的执行顺序,注意是不按导入规则的(这里是编译时按文件名的顺序执行的) Q.init函数能 ...
- MultiBoot SPI
对于7系列FPGA来说,计算器件启动时间按照以下公式: Config time = Bitstream size / (Config clk freq * Config interface width ...