【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作
好像还有个名字叫做“极大化”?
Description
Input
Output
Sample Input
1 0 1
0 1 0
1 0 0
Sample Output
6
HINT
N, M ≤ 2000
题目分析
第一步先插空把数字取反,把“黑白相间”这个条件转为求最大0/1矩形。
如果只是求最大的正方形,用dp非常容易解决。但因为这里还要求最大矩形,所以用单调栈会更加方便一些。
先预处理$s[i][j]$表示在第$i$行,以第$j$列为结束的0序列长度。
处理出这个东西以后,先固定一列$j$,再枚举每一行$i$。对于这个枚举出来的点$(i,j)$,就可以利用预处理出的$s[i][j]$来寻找它向上所能最大扩张长度。
实际处理的过程如图所示。
另推荐一篇博客:https://blog.csdn.net/Tag_king/article/details/45166051
#include<bits/stdc++.h>
const int maxn = ; struct node
{
int x,h;
node(int a=, int b=):x(a),h(b) {}
}stk[maxn];
int n,m,cnt;
int squ,rect;
int a[maxn][maxn],s[maxn][maxn]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int sqr(int x){return x*x;}
void push(int x, int h)
{
int now = x;
while (cnt&&stk[cnt].h > h)
{
squ = std::max(squ, sqr(std::min(x-stk[cnt].x, stk[cnt].h)));
rect = std::max(rect, (x-stk[cnt].x)*stk[cnt].h);
now = stk[cnt].x;
cnt--;
}
stk[++cnt] = node(now, h);
}
void calc()
{
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
s[i][j] = a[i][j]?:s[i][j-]+;
for (int j=; j<=m; j++)
{
cnt = ;
for (int i=; i<=n; i++) push(i, s[i][j]);
push(n+, );
}
}
int main()
{
n = read(), m = read();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
(i+j)%?a[i][j] = read():a[i][j] = -read();
calc();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
a[i][j] = -a[i][j];
calc();
printf("%d\n%d\n",squ,rect);
return ;
}
END
【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作的更多相关文章
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 3248 Solved: 1636 [Submit][St ...
- BZOJ1057[ZJOI2007]棋盘制作 [单调栈]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- BZOJ1057 [ZJOI2007]棋盘制作
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- bzoj1057: [ZJOI2007]棋盘制作--最大子矩阵
既然要求最大01子矩阵,那么把应该为0的位置上的数取反,这样就变成求最大子矩阵 最大子矩阵可以用单调栈 #include<stdio.h> #include<string.h> ...
- bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作
洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...
- 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)
传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...
- bzoj1057: [ZJOI2007]棋盘制作(悬线法)
题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...
随机推荐
- hadoop 2.5.1单机安装部署伪集群
环境:ubuntu 14.04 server 64版本 hadoop 2.5.1 jdk 1.6 部署的步骤主要参考了http://blog.csdn.net/greensurfer/article/ ...
- 最新apple邓白氏码申请地址
时间:2015-11-04 https://developer.apple.com/program/enroll/dunsLookupForm.action
- [題解](狀壓/水)luogu_P1879玉米田
大水題然而因為智障的錯誤调了半天......n,m别反着输入啊......內外循環和狀態數都不等價 别的就是記錄一下每一行不可行的點,也狀壓一下,dp的時候判一下即可 #include<bits ...
- JS异常捕获和抛出
try...catch 用来异常捕获(主要适用于IE5以上内核的浏览器,也是最常用的异常捕获方式) 使用onerror时间捕获异常,这种捕获方式是比较古老的一中方式,目前一些主流的浏览器暂不支持这种 ...
- C#基础之析构函数
- RS485的自动发送与布线
布线http://blog.sina.com.cn/s/blog_729a492301019owo.html 自动收发电路:485注意控制端电平问题(3.3/5V)
- jQuery scrollLeft()与scrollTop() 源码解读
这里的实现也很容易懂,通过jQuery的静态方法each给jQuery的原型添加scrollLeft和scrollTop方法. 这里在取值时它把window和普通的element做了区分 如果是win ...
- hdu1754I Hate It(splay)
链接 线段树的水题,拿来学习一下splay. 本题涉及到求最大值以及单点更新,折腾了许久,差不多把splay搞明白了. 按位置建树,按位置是一颗排序二叉树,对于区间的操作非常方便,每次操作都将需要的结 ...
- jsp九大内置对象响应类型
内置对象 类型request httpServletRequestout jspWriterresponse ...
- SSM环境集成log4j
本文只针对非Maven环境: 1.拷入log4j相关的.jar 2.在web.xml中配置 <!--由Spring载入的Log4j配置文件位置--> <context-param&g ...