【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作
好像还有个名字叫做“极大化”?
Description
Input
Output
Sample Input
1 0 1
0 1 0
1 0 0
Sample Output
6
HINT
N, M ≤ 2000
题目分析
第一步先插空把数字取反,把“黑白相间”这个条件转为求最大0/1矩形。
如果只是求最大的正方形,用dp非常容易解决。但因为这里还要求最大矩形,所以用单调栈会更加方便一些。
先预处理$s[i][j]$表示在第$i$行,以第$j$列为结束的0序列长度。

处理出这个东西以后,先固定一列$j$,再枚举每一行$i$。对于这个枚举出来的点$(i,j)$,就可以利用预处理出的$s[i][j]$来寻找它向上所能最大扩张长度。

实际处理的过程如图所示。
另推荐一篇博客:https://blog.csdn.net/Tag_king/article/details/45166051
#include<bits/stdc++.h>
const int maxn = ; struct node
{
int x,h;
node(int a=, int b=):x(a),h(b) {}
}stk[maxn];
int n,m,cnt;
int squ,rect;
int a[maxn][maxn],s[maxn][maxn]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int sqr(int x){return x*x;}
void push(int x, int h)
{
int now = x;
while (cnt&&stk[cnt].h > h)
{
squ = std::max(squ, sqr(std::min(x-stk[cnt].x, stk[cnt].h)));
rect = std::max(rect, (x-stk[cnt].x)*stk[cnt].h);
now = stk[cnt].x;
cnt--;
}
stk[++cnt] = node(now, h);
}
void calc()
{
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
s[i][j] = a[i][j]?:s[i][j-]+;
for (int j=; j<=m; j++)
{
cnt = ;
for (int i=; i<=n; i++) push(i, s[i][j]);
push(n+, );
}
}
int main()
{
n = read(), m = read();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
(i+j)%?a[i][j] = read():a[i][j] = -read();
calc();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
a[i][j] = -a[i][j];
calc();
printf("%d\n%d\n",squ,rect);
return ;
}
END
【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作的更多相关文章
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 3248 Solved: 1636 [Submit][St ...
- BZOJ1057[ZJOI2007]棋盘制作 [单调栈]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- BZOJ1057 [ZJOI2007]棋盘制作
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- bzoj1057: [ZJOI2007]棋盘制作--最大子矩阵
既然要求最大01子矩阵,那么把应该为0的位置上的数取反,这样就变成求最大子矩阵 最大子矩阵可以用单调栈 #include<stdio.h> #include<string.h> ...
- bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作
洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...
- 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)
传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...
- bzoj1057: [ZJOI2007]棋盘制作(悬线法)
题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...
随机推荐
- web前端篇:JavaScript正则表达式
目录 JavaScript正则表达式 1.创建正则表达式 1.1方法1:直接量语法 1.2 方法2:创建RegExp对象的语法 1.3 区别: 1.4正则表达式使用 2.正则对象的属性 2.1.属性 ...
- C 语言实例 - 计算两个时间段的差值
C 语言实例 - 计算两个时间段的差值 C 语言实例 C 语言实例 计算两个时间段的差值. 实例 #include <stdio.h> struct TIME { int seconds; ...
- echarts相关属性设置(3)环状图
option = { grid: { left: '3%', top: '0%', // height: 500, right: '30%', containLabel: true, }, legen ...
- .Net Core应用框架Util介绍(一)转
回顾 2015年,正当我还沉迷于JQuery + EasyUi的封装时,突然意识到技术已经过时. JQuery在面对更加复杂的UI需求时显得力不从心,EasyUi虽然组件比较完善,但界面风格老旧,响应 ...
- Solr查询中涉及到的Cache使用及相关的实现【转】
转自:http://www.cnblogs.com/phinecos/archive/2012/05/24/2517018.html 本文将介绍Solr查询中涉及到的Cache使用及相关的实现.Sol ...
- Spring Security LDAP简介
1.概述 在本快速教程中,我们将学习如何设置Spring Security LDAP. 在我们开始之前,了解一下LDAP是什么? - 它代表轻量级目录访问协议.它是一种开放的,与供应商无关的协议,用于 ...
- 小程序 显示Toobar
要实现的效果 在 下面app.json 中加下列代码 "tabBar": { "color": "#7A7E83", "se ...
- 前端之CSS常见兼容性问题
1.双倍浮动BUG: 描述:块状元素设置了float属性后,又设置了横向的margin值,在IE6下显示的margin值要比设置的值大: 解决方案:给float的元素添加 display:inline ...
- mongodb Gridfs操作
GridFS 介绍 GridFS是MongoDB规范用于存储和检索大文件,如图片,音频文件,视频文件等.这是一种文件系统用来存储文件,但数据存储于MongoDB集合中.GridFS存储文件比其文档大小 ...
- option标签selected="selected"属性失效的问题
要在select标签上面加上autocomplete="off"关闭自动完成,不然浏览器每次刷新后将自动选择上一次关闭时的option,这样默认属性selected="s ...