【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作
好像还有个名字叫做“极大化”?
Description
Input
Output
Sample Input
1 0 1
0 1 0
1 0 0
Sample Output
6
HINT
N, M ≤ 2000
题目分析
第一步先插空把数字取反,把“黑白相间”这个条件转为求最大0/1矩形。
如果只是求最大的正方形,用dp非常容易解决。但因为这里还要求最大矩形,所以用单调栈会更加方便一些。
先预处理$s[i][j]$表示在第$i$行,以第$j$列为结束的0序列长度。
处理出这个东西以后,先固定一列$j$,再枚举每一行$i$。对于这个枚举出来的点$(i,j)$,就可以利用预处理出的$s[i][j]$来寻找它向上所能最大扩张长度。
实际处理的过程如图所示。
另推荐一篇博客:https://blog.csdn.net/Tag_king/article/details/45166051
#include<bits/stdc++.h>
const int maxn = ; struct node
{
int x,h;
node(int a=, int b=):x(a),h(b) {}
}stk[maxn];
int n,m,cnt;
int squ,rect;
int a[maxn][maxn],s[maxn][maxn]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int sqr(int x){return x*x;}
void push(int x, int h)
{
int now = x;
while (cnt&&stk[cnt].h > h)
{
squ = std::max(squ, sqr(std::min(x-stk[cnt].x, stk[cnt].h)));
rect = std::max(rect, (x-stk[cnt].x)*stk[cnt].h);
now = stk[cnt].x;
cnt--;
}
stk[++cnt] = node(now, h);
}
void calc()
{
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
s[i][j] = a[i][j]?:s[i][j-]+;
for (int j=; j<=m; j++)
{
cnt = ;
for (int i=; i<=n; i++) push(i, s[i][j]);
push(n+, );
}
}
int main()
{
n = read(), m = read();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
(i+j)%?a[i][j] = read():a[i][j] = -read();
calc();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
a[i][j] = -a[i][j];
calc();
printf("%d\n%d\n",squ,rect);
return ;
}
END
【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作的更多相关文章
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 3248 Solved: 1636 [Submit][St ...
- BZOJ1057[ZJOI2007]棋盘制作 [单调栈]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- BZOJ1057 [ZJOI2007]棋盘制作
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- bzoj1057: [ZJOI2007]棋盘制作--最大子矩阵
既然要求最大01子矩阵,那么把应该为0的位置上的数取反,这样就变成求最大子矩阵 最大子矩阵可以用单调栈 #include<stdio.h> #include<string.h> ...
- bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]
Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应 ...
- 洛谷 P1169||bzoj1057 [ZJOI2007]棋盘制作
洛谷P1169 bzoj1057 这个题目跟最大全0子矩阵是类似的.正方形的话,只要把任意极大子正方形(”极大“定义见后面的”论文“)当成把某个极大子矩形去掉一块变成正方形即可,容易解决. 解法1:看 ...
- 2018.10.19 bzoj1057: [ZJOI2007]棋盘制作(悬线法)
传送门 悬线法板题. 如果只求最大矩形面积那么跟玉蟾宫是一道题. 现在要求最大正方形面积. 所以每次更新最大矩形面积时用矩形宽的平方更新一下正方形答案就行了. 代码: #include<bits ...
- bzoj1057: [ZJOI2007]棋盘制作(悬线法)
题目要求纵横坐标和奇偶性不同的点取值不同,于是我们把纵横坐标和奇偶性为1的点和0的点分别取反,就变成经典的最大全1子矩阵问题了,用悬线法解决. #include<iostream> #in ...
随机推荐
- C语言中位运算符异或“∧”的作用
异或运算符∧也称XOR运算符.它的规则是若参加运算的两个二进位同号,则结果为0(假):异号则为1(真).即0∧=,∧=,∧=.如: 即071∧,结果为023(八进制数). “异或”的意思是判断两个相应 ...
- C - 不要62
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> ...
- JQ Ajax 同步与异步的区别
$.ajax({ url: xml_addr, type: 'get', dataType: 'xml', timeout: 1000, //设定超时 cache: false, //禁用缓存 asy ...
- Tinghua Data Mining 6
Networks 多层感知机 不是说这个神经网络要与人的大脑神经完全相似,也不是说要多么的强大,而是在一定程度上模拟了人脑神经元的能力,就足够了 为什么要w0呢,因为没有w0超平面一定会经过原点,所以 ...
- 牛客寒假6-D.美食
链接:https://ac.nowcoder.com/acm/contest/332/D 题意: 小B喜欢美食. 现在有n个美食排成一排摆在小B的面前,依次编号为1..n,编号为i的食物大小为 a[i ...
- c#学习系列之静态类,静态构造函数,静态成员,静态方法(总之各种静态)
<1>静态类: 静态类与非静态类的重要区别在于静态类不能实例化,也就是说,不能使用 new 关键字创建静态类类型的变量.静态类最大的特点就是共享.在声明一个类时使用static关键字,具有 ...
- GDB 格式化结构体输出
转载:http://blog.csdn.net/unix21/article/details/9991925 set print addressset print address on打开地址输出,当 ...
- ASP.NET Core MVC/WebAPi 模型绑定
public class Person { public string Name { get; set; } public string Address { get; set; } public in ...
- find搜索文件系统,实时搜索
find搜索文件系统.实时搜索 find[目录][条件][动作] [目录] 不输入目录代表当前目录 find find /etc ----------------------------------- ...
- promise从易到难
Chapter 1 // 需求:你要封装一个方法,我给你一个要读取文件的路径,你这个方法能帮我读取文件,并把内容返回给我 const fs = require('fs') const path = r ...