Quoit Design

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 29344    Accepted Submission(s): 7688

Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.

 
Input
The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
 
Output
For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places. 
 
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5
0
0
0
0
1.5
0
 
Sample Output
0.71
0.00
0.75
题目大意:给n个点,求最近点对距离的一半。
按x值排序,分治法二分递归搜索,合并的时候注意一下把那些fabs(p[i].x-p[mid].x)<=ans的点找出来,这些点中可能有更小的ans,把他们按y值排序,暴力两层循环更新ans,当p[j].y-p[i].y>=ans时没必要继续了。
 #include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; const int maxn=;
int N,f[maxn];
struct Point
{
double x,y;
}p[maxn]; double min(double a,double b){ return a<b?a:b;}
bool cmpx(const Point &a,const Point &b)
{
return a.x<b.x;
}
bool cmpy(const int a,const int b)
{
return p[a].y<p[b].y;
}
double dist(int a,int b)
{
return sqrt((p[a].x-p[b].x)*(p[a].x-p[b].x)+(p[a].y-p[b].y)*(p[a].y-p[b].y));
}
double BinarySearch(int l,int r)
{
if(l+==r)
{
return dist(l,r);
}
if(l+==r)
{
return min(min(dist(l,l+),dist(l+,l+)),dist(l,l+));
}
int mid=(l+r)>>;
double ans=min(BinarySearch(l,mid),BinarySearch(mid+,r));
int i,j,cnt=;
for(i=l;i<=r;i++)
{
if(fabs(p[i].x-p[mid].x)<=ans)
f[cnt++]=i;
}
sort(f,f+cnt,cmpy);
for(i=;i<cnt;i++)
{
for(j=i+;j<cnt;j++)
{
if(p[f[j]].y-p[f[i]].y>=ans) break;
ans=min(ans,dist(f[i],f[j]));
}
}
return ans;
}
int main()
{
while(scanf("%d",&N),N)
{
for(int i=;i<N;i++)
scanf("%lf %lf",&p[i].x,&p[i].y);
sort(p,p+N,cmpx);
printf("%.2lf\n",BinarySearch(,N-)/);
}
return ;
}
 

hdu 1007 Quoit Design 分治求最近点对的更多相关文章

  1. HDU 1007 Quoit Design(经典最近点对问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  2. HDU 1007 Quoit Design 平面内最近点对

    http://acm.hdu.edu.cn/showproblem.php?pid=1007 上半年在人人上看到过这个题,当时就知道用分治但是没有仔细想... 今年多校又出了这个...于是学习了一下平 ...

  3. HDU 1007 Quoit Design(计算几何の最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  4. hdu 1007 Quoit Design(平面最近点对)

    题意:求平面最近点对之间的距离 解:首先可以想到枚举的方法,枚举i,枚举j算点i和点j之间的距离,时间复杂度O(n2). 如果采用分治的思想,如果我们知道左半边点对答案d1,和右半边点的答案d2,如何 ...

  5. HDU 1007 Quoit Design【计算几何/分治/最近点对】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. hdu 1007 Quoit Design(分治法求最近点对)

    大致题意:给N个点,求最近点对的距离 d :输出:r = d/2. // Time 2093 ms; Memory 1812 K #include<iostream> #include&l ...

  7. hdu 1007 Quoit Design (最近点对问题)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. (hdu1007)Quoit Design,求最近点对

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

随机推荐

  1. python 产生随机数

    Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...

  2. sql server 定时备份 脚本

    ) DECLARE @date DATETIME SELECT @date = GETDATE() SELECT @filename = 'G:\backup\NewPlulishSQL-' + CA ...

  3. oracle centos 重启后报错ORA-12514, TNS:listener does not currently know of service requested in connect descriptor

    oracle centos 重启后报错ORA-12514, TNS:listener does not currently know of service requested in connect d ...

  4. 【STL学习笔记】一、STL体系

    目录 1.标准库以header files形式呈现 2.namespce命名空间 3.STL与OO 4.STL六组件及其关系 5.STL组件例子 6.range-based for statement ...

  5. PAT 乙级 1048

    题目 题目地址:PAT 乙级 1048 思路 这道题坑的地方在于:即使B的长度小于A,仍然要对B补齐,也就是说最终结果的长度取决于A和B中长度更长的那一项:即只要A.B长度不一致,就要对短的一个进行补 ...

  6. CentOS 7 配置OpenCL环境(安装NVIDIA cuda sdk、Cmake、Eclipse CDT)

    序 最近需要在Linux下进行一个OpenCL开发的项目,现将开发环境的配置过程记录如下,方便查阅. 完整的环境配置需要以下几个部分: 安装一个OpenCL实现,基于硬件,选择NVIDIA CUDA ...

  7. POJ:2060-Taxi Cab Scheme(最小路径覆盖)

    传送门:http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS Memory Limit: 30000K Total Sub ...

  8. 思维水题:UVa512-Spreadsheet Tracking

    Spreadsheet Tracking Data in spreadsheets are stored in cells, which are organized in rows (r) and c ...

  9. hdu 5441

    Travel Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Su ...

  10. Android CTS - Cannot run program "aapt"/ Fail to run aapt on .../apk installed but AaptParser failed

    今天同事碰到cts的一些问题,跑到某个apk的时候,就提示如下错误: Cannot run program "aapt": error=2. No such file or dir ...