题目描述

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

输入

第一行为两个整数n,k。

输出

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

样例输入

4 1

样例输出

3


题解

dp傻*题

设f[i][j]表示1~i组成逆序对个数为j的数列的方案数,那么考虑第i个元素,它对逆序对个数可能产生0~i-1的贡献。

所以有f[i][j]=∑f[i-1][j-k],0≤k<i。

然后用一个前缀和来优化即可。注意点边界什么的就行。

#include <cstdio>
#include <algorithm>
#define mod 10000
using namespace std;
int f[1010][1010] , sum[1010][1010];
int main()
{
int n , k , i , j;
scanf("%d%d" , &n , &k);
f[0][1] = sum[0][1] = 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= k + 1 && j <= i * (i - 1) / 2 + 1 ; j ++ ) f[i][j] = (sum[i - 1][j] - sum[i - 1][max(0 , j - i)] + mod) % mod;
for(j = 1 ; j <= k + 1 ; j ++ ) sum[i][j] = (sum[i][j - 1] + f[i][j]) % mod;
}
printf("%d\n" , f[n][k + 1]);
return 0;
}

【bzoj2431】[HAOI2009]逆序对数列 dp的更多相关文章

  1. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  2. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  3. [BZOJ2431][HAOI2009]逆序对数列(DP)

    从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...

  4. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  5. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  6. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  7. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  8. bzoj2431: [HAOI2009]逆序对数列(DP)

    f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...

  9. bzoj2431: [HAOI2009]逆序对数列

    dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...

随机推荐

  1. 【BZOJ2730】[HNOI2012] 矿场搭建(找割点)

    点此看题面 大致题意: 一张无向图,要求你在去掉任意一个节点之后,剩余的每个节点都能到达一个救援出口,问至少需要几个救援出口. 第一步:\(Tarjan\)求割点 首先,我们要跑一遍\(Tarjan\ ...

  2. python 补缺收集

    [http://www.cnblogs.com/happyframework/p/3255962.html] 1. 高效code 与 不常用的函数用法: #带索引的遍历 , )): print(ind ...

  3. 《剑指offer》【调整数组顺序使奇数位于偶数前面】(python版)

    题目描述: 输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有的奇数位于数组的前半部分,所有的偶数位于位于数组的后半部分 思路: 我认真看了一下,题目应该是要求在原地调整,所以这里不能再 ...

  4. java基础编程——二维数组中的查找

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  5. JSPatch - iOS 动态补丁

    JSPatch库,支持在线更新iOS应用,目前BDN项目中有用到,主要用来修复线上Crash和Bug 相关博文推荐: JSPatch – 动态更新iOS APP(这是JSPatch作者的博文) JSP ...

  6. oc字符串截取 数组字典运用

    #define NSLog(FORMAT, ...) printf("%s\n", [[NSString stringWithFormat:FORMAT, ##__VA_ARGS_ ...

  7. 小象学院Python数据分析第二期【升级版】

    点击了解更多Python课程>>> 小象学院Python数据分析第二期[升级版] 主讲老师: 梁斌 资深算法工程师 查尔斯特大学(Charles Sturt University)计 ...

  8. ZendFramework-2.4 源代码 - 关于Module - 模块入口文件

    <?php // /data/www/www.domain.com/www/module/Album/Module.php namespace Album; use Zend\ModuleMan ...

  9. OpenFaceswap 入门教程(2):软件使用篇!

    安装完OpenFaceswap之后,是不是就迫不及待的想要“见证奇迹”了呢? 都说磨刀不误砍柴工.开始之前请先做一个准备.然后大致了解一下换脸的过程 换脸基本步骤是: 把视频切成很多图片 把图片中的人 ...

  10. 服务器常说的U是什么意思?

    U是英文单词:unit 所说的1U和2U,是服务器的厚度,1U大概是相当于机柜的两个小格子,2U是四个格子.1U大概是4.45厘米(1U=1.75英寸,1英寸=2.54CM).以下这个是图片: