【bzoj2431】[HAOI2009]逆序对数列 dp
题目描述
输入
第一行为两个整数n,k。
输出
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
样例输入
4 1
样例输出
3
题解
dp傻*题
设f[i][j]表示1~i组成逆序对个数为j的数列的方案数,那么考虑第i个元素,它对逆序对个数可能产生0~i-1的贡献。
所以有f[i][j]=∑f[i-1][j-k],0≤k<i。
然后用一个前缀和来优化即可。注意点边界什么的就行。
#include <cstdio>
#include <algorithm>
#define mod 10000
using namespace std;
int f[1010][1010] , sum[1010][1010];
int main()
{
int n , k , i , j;
scanf("%d%d" , &n , &k);
f[0][1] = sum[0][1] = 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= k + 1 && j <= i * (i - 1) / 2 + 1 ; j ++ ) f[i][j] = (sum[i - 1][j] - sum[i - 1][max(0 , j - i)] + mod) % mod;
for(j = 1 ; j <= k + 1 ; j ++ ) sum[i][j] = (sum[i][j - 1] + f[i][j]) % mod;
}
printf("%d\n" , f[n][k + 1]);
return 0;
}
【bzoj2431】[HAOI2009]逆序对数列 dp的更多相关文章
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [bzoj2431][HAOI2009][逆序对数列] (dp计数)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [BZOJ2431][HAOI2009]逆序对数列(DP)
从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- bzoj2431: [HAOI2009]逆序对数列(DP)
f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...
- bzoj2431: [HAOI2009]逆序对数列
dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...
随机推荐
- C++中的异常安全性
http://blog.csdn.net/bonchoix/article/details/8046727 一个函数如果说是“异常安全”的,必须同时满足以下两个条件:1.不泄漏任何资源:2.不允许破坏 ...
- 【洛谷3275】[SCOI2011] 糖果(差分约束系统入门题)
点此看题面 大致题意: 有\(N\)个小朋友,要求每个人都得到糖果,且每个人的糖果总数满足一定的关系式,请你求出至少共分给小朋友们多少糖果. 关系式的转换 首先,我们可以将题目中给定的式子进行转换: ...
- MySQL8.0在Windows下的安装和使用
前言 MySQL在Windows下有2种安装方式:1.图形化界面方式安装MySQL 2.noinstall方式安装MySQL.在这里,本文只介绍第二种方式:以noinstall方式安装MySQL,以及 ...
- FETCH - 用游标从查询中抓取行
SYNOPSIS FETCH [ direction { FROM | IN } ] cursorname where direction can be empty or one of: NEXT P ...
- https及其背后的加密原理阅读总结
https是以安全为目标的http通道,简单讲是http的安全版.当我们往服务器发送比较隐私的数据(比如说你的银行卡,身份证)时,如果使用http进行通信.那么安全性将得不到保障. 首先数据在传输的过 ...
- JSP出现"属性值[request.getParameter("myMessage")]引用["],在值内使用时必须被转义"的解决方法
写JSP时出现属性值[request.getParameter("myMessage")]引用["],在值内使用时必须被转义. 源代码: <jsp:setPrope ...
- Uva 长城守卫——1335 - Beijing Guards
二分查找+一定的技巧 #include<iostream> using namespace std; +; int n,r[maxn],Left[maxn],Right[maxn];//因 ...
- 项目实战15.1—企业级堡垒机 jumpserver一步一步搭建
本文收录在Linux运维企业架构实战系列 环境准备 系统:CentOS 7 IP:192.168.10.101 关闭selinux 和防火墙 # CentOS 7 $ setenforce 0 # 可 ...
- DevOps - 配置管理 - Chef
#!/bin/sh # WARNING: REQUIRES /bin/sh # # - must run on /bin/sh on solaris 9 # - must run on /bin/sh ...
- php下关于Cannot use a scalar value as an array的解决办法
今天在测试php程序的时候,出现了一个错误提示:Cannot use a scalar value as an array,这个错误提示前几天也出过,当时好像稍微调了一下就好了,也没深究,今天却又出现 ...