An easy problem B

Time Limit: 2000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others)

Problem Description

N个数排成一列,每个数的大小为1或者0。有两种操作,第一种操作是把一段区间内的每个数异或1,第二种操作是询问区间内最长连续1的长度。

Input

第一行一个整数N(1≤N≤100000),表示N个数。第二行N个数。接下来一行一个整数M(1≤M≤100000),表示M个操作,接下来M行每行三个整数K,L,R。K=1表示把L到R这段区间的数全部异或上1,K=0表示询问L到R这段区间内最长连续1的长度。

Output

对于每个询问,输出对应的答案,每个询问占一行。

Sample Input

5

0 1 0 0 1

5

0 1 4

1 1 1

0 1 4

1 3 4

0 1 4

Sample Output

1

2

4


解题心得:

  1. 这个题考的就是一个线段树的区间合并问题外加一个lazy标记。其实这个题比较烦,要分比较多的情况,还很容易写bug。
  2. 先不说区间里面的0-1反转问题,就只是说建树和区间合并。首先要将区间合并起来(也就是向上更新的部分pushup),就要看区间合并包括几个部分。第一个,两个小的区间合并成一个大的区间,大的区间左方的最长连续1的部分就是这个大区间左子树的左方连续1部分,但是还没完,有一种特殊情况,当左子树全是1的时候大的区间的左方连续1是左子树的长度加上右子树的左方连续1的长度。大区间右方连续1的部分和左方的算法一样。还有就是大的区间的中间的连续的最大的连续1的长度,它由左子树的右方连续1的长度加上右子树左方连续1的长度。最后将三个最长的连续1区间比较一下得出最长的连续1区间。
  3. 那么我们在树中就要维护,当前节点(线段)的长度(r-l+1),l和r的位置,最长的左、右连续1的最长长度,当前最长的连续1的最长长度,以及一个lazy标记,同时,既然最后还要0-1反转,那么不但要记录1还要记录0,这样在0-1反转的时候直接将记录的0和1的情况直接交换就行了。
  4. 最后说说lazy标记的问题,当要对当前的区间进行更新的时候,要将当前区间更新,将当前区间lazy标记,并不是只标记而不进行更新。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+100;
struct node
{
int lsum1,rsum1,lsum2,rsum2,l,r,sum1,sum2,lazy,len;//sum1代表1的情况,sum2代表0的情况
} tree[maxn<<2];
int n,m; //lazy标记下移,0-1反转
void pushdown(int root)
{
if(!tree[root].lazy)
return;
tree[root<<1].lazy ^= 1;
tree[root<<1|1].lazy ^= 1;
swap(tree[root<<1].sum1,tree[root<<1].sum2);
swap(tree[root<<1].lsum1,tree[root<<1].lsum2);
swap(tree[root<<1].rsum1,tree[root<<1].rsum2); swap(tree[root<<1|1].sum1,tree[root<<1|1].sum2);
swap(tree[root<<1|1].lsum1,tree[root<<1|1].lsum2);
swap(tree[root<<1|1].rsum1,tree[root<<1|1].rsum2); tree[root].lazy = 0;//当前的lazy标记需要取消
} //向上更新
void pushup(int root)
{
tree[root].lsum1=tree[root<<1].lsum1;
tree[root].lsum2=tree[root<<1].lsum2;
if(tree[root<<1].lsum1==tree[root<<1].len) tree[root].lsum1+=tree[root<<1|1].lsum1;//当最左边连续1的个数等于长度的时候
if(tree[root<<1].lsum2==tree[root<<1].len) tree[root].lsum2+=tree[root<<1|1].lsum2; tree[root].rsum1=tree[root<<1|1].rsum1;
tree[root].rsum2=tree[root<<1|1].rsum2;
if(tree[root<<1|1].rsum1==tree[root<<1|1].len) tree[root].rsum1+=tree[root<<1].rsum1;
if(tree[root<<1|1].rsum2==tree[root<<1|1].len) tree[root].rsum2+=tree[root<<1].rsum2; tree[root].sum1 = max(max(tree[root<<1].sum1, tree[root<<1|1].sum1), tree[root<<1].rsum1+tree[root<<1|1].lsum1);
tree[root].sum2 = max(max(tree[root<<1].sum2, tree[root<<1|1].sum2), tree[root<<1].rsum2+tree[root<<1|1].lsum2);
} void build_tree(int l,int r,int root)
{
tree[root].l = l,tree[root].r = r,tree[root].lazy = 0;
tree[root].len = r - l + 1;
if(l == r)
{
int x;
scanf("%d",&x);
if(x)
{
tree[root].lsum1 = tree[root].rsum1 = tree[root].sum1 = 1;
tree[root].lsum2 = tree[root].rsum2 = tree[root].sum2 = 0;
}
else
{
tree[root].lsum1 = tree[root].rsum1 = tree[root].sum1 = 0;
tree[root].lsum2 = tree[root].rsum2 = tree[root].sum2 = 1;
}
return ;
} int mid = (l + r) >> 1;
build_tree(l,mid,root<<1);
build_tree(mid+1,r,root<<1|1);
pushup(root);//记得向上更新
} void change(int a,int b,int l,int r,int root)
{
if(a <= l && b >= r)
{
swap(tree[root].sum1,tree[root].sum2);
swap(tree[root].lsum1,tree[root].lsum2);
swap(tree[root].rsum1,tree[root].rsum2);
tree[root].lazy ^= 1;//lazy标记
return ;
}
int mid = (l + r) / 2;
pushdown(root);//标记下移
if(b <= mid)
change(a,b,l,mid,root<<1);
else if(a > mid)
change(a,b,mid+1,r,root<<1|1);
else
{
change(a,mid,l,mid,root<<1);
change(mid+1,b,mid+1,r,root<<1|1);
}
pushup(root);
} int query(int a,int b,int l,int r,int root)
{
if(a <= l && b >= r)
return tree[root].sum1; int mid = (l + r)/2;
pushdown(root);
if(b <= mid)
return query(a,b,l,mid,root<<1);
else if(a > mid)
return query(a,b,mid+1,r,root<<1|1);
else
{
//看起来很多 就是左子树的最大值和右子树的最大值和两个子树合并起来的值取最大的一个
int m1 = query(a,mid,l,mid,root<<1);
int m2 = query(mid+1,b,mid+1,r,root<<1|1);
int m3 = max(m1,m2);
int m4 = min(tree[root<<1].rsum1,mid-a+1);
int m5 = min(b-mid,tree[root<<1|1].lsum1);
return max(m3,m4+m5);
}
pushup(root);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
build_tree(1,n,1);
scanf("%d",&m);
while(m--)
{
int k,a,b;
scanf("%d%d%d",&k,&a,&b);
if(k)
change(a,b,1,n,1);
else
{
int ans = query(a,b,1,n,1);
printf("%d\n",ans);
}
}
}
return 0;
}

线段树:CDOJ1592-An easy problem B (线段树的区间合并)的更多相关文章

  1. 线段树:CDOJ1597-An easy problem C(区间更新的线段树)

    An easy problem C Time Limit: 4000/2000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...

  2. 线段树:CDOJ1591-An easy problem A (RMQ算法和最简单的线段树模板)

    An easy problem A Time Limit: 1000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...

  3. POJ 2826 An Easy Problem? 判断线段相交

    POJ 2826 An Easy Problem?! -- 思路来自kuangbin博客 下面三种情况比较特殊,特别是第三种 G++怎么交都是WA,同样的代码C++A了 #include <io ...

  4. 线段树: CDOJ1598-加帕里公园的friends(区间合并,单点更新)

    加帕里公园的friends Time Limit: 3000/1000MS (Java/Others) Memory Limit: 131072/131072KB (Java/Others) 我还有很 ...

  5. HDU 5475(2015 ICPC上海站网络赛)--- An easy problem(线段树点修改)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5475 Problem Description One day, a useless calculato ...

  6. ACM学习历程—HDU5475 An easy problem(线段树)(2015上海网赛08题)

    Problem Description One day, a useless calculator was being built by Kuros. Let's assume that number ...

  7. POJ 2826 An Easy Problem?!(线段交点+简单计算)

    Description It's raining outside. Farmer Johnson's bull Ben wants some rain to water his flowers. Be ...

  8. hdu 5475 An easy problem(暴力 || 线段树区间单点更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=5475 An easy problem Time Limit: 8000/5000 MS (Java/Others ...

  9. HDU 5475 An easy problem 线段树

    An easy problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

随机推荐

  1. 基于TCP协议网络编程

    1.TCP/IP是一种可靠的网络协议,它在通信的两端各建立一个Socket,从而在通信的两端之间形成网络虚拟链路: 一旦建立了虚拟的网络链路,两端的程序就可以通过虚拟链路来进行通信: 2.Java对基 ...

  2. DevExpress GridControl 控件二表连动

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  3. 【干货分享】大话团队的GIT分支策略进化史

    封面 作为一名85后的技术男,一转眼10年过去了(一不小心暴露了年龄,虽然我叫18岁fantasy),亲手写代码已经是5年前了,目前主要负责公司的软件产品的规划和设计(所以最近写的东西也主要与设计和产 ...

  4. ngnix集群产生的问题

    还可使用zookeper解决

  5. 机器学习框架ML.NET学习笔记【5】多元分类之手写数字识别(续)

    一.概述 上一篇文章我们利用ML.NET的多元分类算法实现了一个手写数字识别的例子,这个例子存在一个问题,就是输入的数据是预处理过的,很不直观,这次我们要直接通过图片来进行学习和判断.思路很简单,就是 ...

  6. noip搜索模拟题 骰子

    骰子 dice.cpp/c/pas 1s/128M [题目描述] 桌面上有两个特别的骰子.骰子的每一个面,都写了一个不同的数字.设第一个骰子上下左右前后分别为a1, a2, a3, a4, a5, a ...

  7. springmvc的DispatcherServlet源码——doDispatch方法解析

    DispatcherServlet的doDispatch方法主要用作职责调度工作,本身主要用于控制流程,主要职责如下: 1.文件上传解析,如果请求类型是multipart将通过MultipartRes ...

  8. Fleet(集群管理器)

    工作原理 fleet 是通过systemd来控制你的集群的,控制的任务被称之为unit(单元),控制的命令是fleetctl unit运行方式 unit的运行方式有两种: standard globa ...

  9. spring boot Filter过滤器的简单使用

    springboot使用Filter过滤器有两种方式: 一种是实现Filter接口然后通过@Component注解向项目加入过滤器 另一种是通过配置类来配置过滤器 @Component public ...

  10. angularjs e2e测试初步学习(一)

    e2e测试是从用户角度出发,认为整个系统都是一个黑盒,只有UI暴露出来. angularjs的测试框架是采用protractor. 1.创建文件 首先创建一个项目文件夹test,然后再创建两个文件,一 ...