[Machine Learning with Python] How to get your data?
Using Pandas Library
The simplest way is to read data from .csv
files and store it as a data frame object:
import pandas as pd
df = pd.read_csv('olympics.csv', index_col=0, skiprows=1)
You can also read .xsl
files and directly select the rows and columns you are interested in by setting parameters skiprows
, usecols
. Also, you can indicate index column by parameter index_col
.
energy=pd.read_excel('Energy Indicators.xls', sheet_name='Energy',skiprows=8,usecols='E,G', index_col=None, na_values=['NA'])
For .txt
files, you can also use read_csv
function by defining the separation symbol:
university_towns=pd.read_csv('university_towns.txt',sep='\n',header=None)
See more about pandas io operations in http://pandas.pydata.org/pandas-docs/stable/io.html
Using os Module
Read .csv
files:
import os
import csv
for file in os.listdir("objective_folder"):
with open('objective_folder/'+file, newline='') as csvfile:
rows = csv.reader(csvfile) # read csc file
for row in rows: # print each line in the file
print(row)
Read .xsl
files:
import os
import xlrd
for file in os.listdir("objective_folder/"):
data = xlrd.open_workbook('objective_folder/'+file)
table = sheel_1 = data.sheet_by_index(0)#the first sheet in Excel
nrows = table.nrows #row number
for i in range(nrows):
if i == 0: # skip the first row if it defines variable names
continue
row_values = table.row_values(i) #read each row value
print(row_values)
Download from Website Automatically
We can also try to read data directly from url link. This time, the .csv
file is compressed as housing.tgz
. We need to download the file and then decompress it. So you can write a small function as below to realize it. It is a worthy effort because you can get the most recent data every time you run the function.
import os
import tarfile
from six.moves import urllib
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING_PATH = "datasets/housing"
HOUSING_URL = DOWNLOAD_ROOT + HOUSING_PATH + "/housing.tgz"
def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
if not os.path.isdir(housing_path):
os.makedirs(housing_path)
tgz_path = os.path.join(housing_path, "housing.tgz")
urllib.request.urlretrieve(housing_url, tgz_path)
housing_tgz = tarfile.open(tgz_path)
housing_tgz.extractall(path=housing_path)
housing_tgz.close()
when you call fetch_housing_data()
, it creates a datasets/housing
directory in your workspace, downloads the housing.tgz
file, and extracts the housing.csv
from it in this directory.
Now let’s load the data using Pandas. Once again you should write a small function to load the data:
import pandas as pd
def load_housing_data(housing_path=HOUSING_PATH):
csv_path = os.path.join(housing_path, "housing.csv")
return pd.read_csv(csv_path)
What’s more?
These methods are what I have met so far. In typical environments your data would be available in a relational database (or some other common datastore) and spread across multiple tables/documents/files. To access it, you would first need to get your credentials and access authorizations, and familiarize yourself with the data schema. I will supplement more methods if I encounter in the future.
[Machine Learning with Python] How to get your data?的更多相关文章
- 【Machine Learning】Python开发工具:Anaconda+Sublime
Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...
- Python (1) - 7 Steps to Mastering Machine Learning With Python
Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Fo ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- 《Learning scikit-learn Machine Learning in Python》chapter1
前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...
- Machine Learning的Python环境设置
Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...
- [Machine Learning with Python] Familiar with Your Data
Here I list some useful functions in Python to get familiar with your data. As an example, we load a ...
- [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset
The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...
- [Machine Learning with Python] Data Preparation through Transformation Pipeline
In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...
- [Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn
In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels ...
随机推荐
- 【整理】虚拟机和主机ping不通解决办法,虚拟机ping不通外网的解决方法
检查几个方面: 1.检查虚拟网卡有没有被禁用2.检查虚拟机与物理机是否在一个VMNet中3.检查虚拟机的IP地址与物理机对应的VMNet是否在一个网段4.检查虚拟机与物理机的防火墙是否允许PING, ...
- 跟踪路由 tracert
由于最近遇到网络出现故障的问题,便使用到Tracert来确定了下出现故障的网络节点 记录下tracert命令相关内容 1. 简介 2. Tracert工作原理... 3. 常用参数 4. 使用示例与输 ...
- 中国电信物联网平台入门学习笔记7:NB-IOT信号如何检测
NB-IOT设备会因为信号的原因,数据发不出.但数据发不出的原因有很多,这么排除是NB-IOT信号的问题呢?那就需要NB-IOT信号检测装置. 网上的信号检测设备 作为一个常年蜗居在实验室的穷屌丝而言 ...
- 线段树:CDOJ1592-An easy problem B (线段树的区间合并)
An easy problem B Time Limit: 2000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...
- Cplex: MIP Control Callback
*本文主要记录和分享学习到的知识,算不上原创 *参考文献见链接 之前,我们有简单提到Cplex中的MIP Callback Interface,包括了Informational callback, q ...
- 如何利用App打造自明星实现自盈利
1.了解各个概念 为了大家都能看懂这篇文章,先说明几个概念. App(Application):可以在移动设备上使用,满足人们咨询.购物.社交.娱乐.搜索等需求的一切应用程序. ...
- [git 学习篇] 创建公钥
http://riny.net/2014/git-ssh-key/ 1 安装 windows gitbash msysgit是Windows版的Git,从https://git-for-wind ...
- [错误解决]刚拿到的服务器vim退格键(backspace)失灵
刚拿到的服务器vim退格键(backspace)失灵: 解决方案: 在主目录下建立.vimrc 覆盖/etc/vimrc的配置 .vimrc 与 /etc/vimrc的区别: 在启动的时候vim会读取 ...
- DS博客作业-05--树
1.本周学习总结 1.1思维导图 1.2学习体会 1.课堂上的知识也很难听懂,打代码就更难听懂了,真的需要不断练习代码. 2.在学习本章的内容中,一开始只是理解了概念,在真正做题中,一点思路都没有 ...
- ruby操作mysql
require "win32ole" require 'pathname' require 'mysql2' excel = WIN32OLE.new('excel.applica ...