Using Pandas Library

The simplest way is to read data from .csv files and store it as a data frame object:

import pandas as pd
df = pd.read_csv('olympics.csv', index_col=0, skiprows=1)

You can also read .xsl files and directly select the rows and columns you are interested in by setting parameters skiprows, usecols. Also, you can indicate index column by parameter index_col.

energy=pd.read_excel('Energy Indicators.xls', sheet_name='Energy',skiprows=8,usecols='E,G', index_col=None, na_values=['NA'])

For .txt files, you can also use read_csv function by defining the separation symbol:

university_towns=pd.read_csv('university_towns.txt',sep='\n',header=None)

See more about pandas io operations in http://pandas.pydata.org/pandas-docs/stable/io.html

Using os Module

Read .csv files:

import os
import csv
for file in os.listdir("objective_folder"):
with open('objective_folder/'+file, newline='') as csvfile:
rows = csv.reader(csvfile) # read csc file
for row in rows: # print each line in the file
print(row)

Read .xsl files:

import os
import xlrd
for file in os.listdir("objective_folder/"):
data = xlrd.open_workbook('objective_folder/'+file)
table = sheel_1 = data.sheet_by_index(0)#the first sheet in Excel
nrows = table.nrows #row number
for i in range(nrows):
if i == 0: # skip the first row if it defines variable names
continue
row_values = table.row_values(i) #read each row value
print(row_values)

Download from Website Automatically

We can also try to read data directly from url link. This time, the .csv file is compressed as housing.tgz. We need to download the file and then decompress it. So you can write a small function as below to realize it. It is a worthy effort because you can get the most recent data every time you run the function.

 import os
import tarfile
from six.moves import urllib
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING_PATH = "datasets/housing"
HOUSING_URL = DOWNLOAD_ROOT + HOUSING_PATH + "/housing.tgz"
def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
if not os.path.isdir(housing_path):
os.makedirs(housing_path)
tgz_path = os.path.join(housing_path, "housing.tgz")
urllib.request.urlretrieve(housing_url, tgz_path)
housing_tgz = tarfile.open(tgz_path)
housing_tgz.extractall(path=housing_path)
housing_tgz.close()

when you call fetch_housing_data(), it creates a datasets/housing directory in your workspace, downloads the housing.tgz file, and extracts the housing.csv from it in this directory.
Now let’s load the data using Pandas. Once again you should write a small function to load the data:

import pandas as pd
def load_housing_data(housing_path=HOUSING_PATH):
csv_path = os.path.join(housing_path, "housing.csv")
return pd.read_csv(csv_path)

What’s more?

These methods are what I have met so far. In typical environments your data would be available in a relational database (or some other common datastore) and spread across multiple tables/documents/files. To access it, you would first need to get your credentials and access authorizations, and familiarize yourself with the data schema. I will supplement more methods if I encounter in the future.

[Machine Learning with Python] How to get your data?的更多相关文章

  1. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  2. Python (1) - 7 Steps to Mastering Machine Learning With Python

    Step 1: Basic Python Skills install Anacondaincluding numpy, scikit-learn, and matplotlib Step 2: Fo ...

  3. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  4. 《Learning scikit-learn Machine Learning in Python》chapter1

    前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...

  5. Machine Learning的Python环境设置

    Machine Learning目前经常使用的语言有Python.R和MATLAB.如果采用Python,需要安装大量的数学相关和Machine Learning的包.一般安装Anaconda,可以把 ...

  6. [Machine Learning with Python] Familiar with Your Data

    Here I list some useful functions in Python to get familiar with your data. As an example, we load a ...

  7. [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset

    The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...

  8. [Machine Learning with Python] Data Preparation through Transformation Pipeline

    In the former article "Data Preparation by Pandas and Scikit-Learn", we discussed about a ...

  9. [Machine Learning with Python] Data Preparation by Pandas and Scikit-Learn

    In this article, we dicuss some main steps in data preparation. Drop Labels Firstly, we drop labels ...

随机推荐

  1. leepcode作业解析-5-21

    25.Nim游戏 你和你的朋友,两个人一起玩 Nim 游戏:桌子上有一堆石头,每次你们轮流拿掉 1 - 3 块石头. 拿掉最后一块石头的人就是获胜者.你作为先手. 你们是聪明人,每一步都是最优解. 编 ...

  2. selenium +python web自动化测试环境搭建

    基础框架搭建 1.安装python 2.安装selenium cmd输入pip install selenium 问题:在python中输入from selenium import webdriver ...

  3. linux下安装mysql并设置远程连接

    腾讯云环境为Centos7.4   mysql版本为5.6 本次安装使用yum安装 检查是否已有mysql: yum list installed | grep mysql 下载yum源文件: wge ...

  4. leetcode-6-basic

    解题思路: 这道题真实地反映了我今晚有多脑残=.=只需要从根号N开始向前找,第一个能被N整除的数就是width,然后存到结果就 可以了.因为离根号N越近,width越大,与length的差越小. ve ...

  5. for_each_node(node)

    遍历各个pg_data_t节点. 1.定义在include/linux/nodemask.h中 /* * Bitmasks that are kept for all the nodes. */ en ...

  6. micrium ucprobe使用笔记

    前段时间在学习ucos-iii的时候,用到了micrium ucprobe,发现在调试的时候,很方便,可以直观的看到任务的运行使用情况,全局变量的值变化等,当然详细的可以参考官方文档,也可以参考网上的 ...

  7. 【HIHOCODER 1142】 三分·三分求极值

    描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物 ...

  8. hdu2604 递推转换矩阵快速幂

    刚开始还以为用位运算与或几下几个循环就搞定了,算着算着发现不行........ 还是一种固定的切题角度,我假设有长度为n,总的排列数位f(n),怎么算他呢?从后往前考虑,因为大多数情况,都是用前面的结 ...

  9. CodeForces 489F DP Special Matrices

    首先统计一下前m行中,有x列1的个数为0,有y列1的个数为1. 设d(i, j)表示有i列1的个数为0,有j列1的个数为1,能到达这个状态的矩阵的个数. 则d(x, y) = 1 每一行都是两个1一起 ...

  10. webdriver高级应用- 无人工干预地自动下载某个文件

    在网页上下载文件时,通常需要人为设定下载文件并选择保持路径,这样就无法实现完全自动的下载过程.下面实现基于firefox浏览器的全自动化文件下载操作: #encoding=utf-8 from sel ...