传送门

如果\(op==1\),那么每一个方案都可以看做从\(n\)个数里选出\(m\)个数,然后\(sort\)一下依次放到每列,方案数就是\({n\choose m}\)。因为\(n\)很大,但是\(m\)不大,所以可以直接计算\(\prod_{i=n-m+1}^ni\),以及\(m\)的阶乘的逆元

如果\(op==0\),我们枚举不同的列的个数\(i\),那么选的方法有\({n\choose i}\),然后相当于是把\(m\)分成\(i\)段连续的数,也就是\(i\)个数相加和为\(m\)的非负整数解的个数,为\({m-1\choose i-1}\),于是方案数为\(\sum_{i=1}^{min(n,m)}{n\choose i}{m-1\choose i-1}\),从\({n\choose i}\)到\({n\choose i+1}\)可以\(O(1)\)计算

//minamoto
#include<bits/stdc++.h>
#define R register
#define int long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e6,P=1e9+7;
int inv[N+5],fac[N+5],ifac[N+5],n,m,op,res,qaq;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int mul(R int x,R int y){return (x%P)*(y%P)%P;}
inline int C(R int n,R int m){return fac[n]*ifac[m]%P*ifac[n-m]%P;}
void init(){
inv[0]=inv[1]=1;
fp(i,2,N)inv[i]=mul(inv[P%i],P-P/i);
fac[0]=ifac[0]=1;
fp(i,1,N)fac[i]=mul(fac[i-1],i),ifac[i]=mul(ifac[i-1],inv[i]);
}
signed main(){
// freopen("testdata.in","r",stdin);
int T=read();init();
while(T--){
n=read(),m=read(),op=read();
if(op==1){
if(m>n)puts("0");
else{
res=1;
fp(i,n-m+1,n)res=mul(res,i%P);
res=mul(res,ifac[m]);
printf("%lld\n",res);
}
}else{
res=0,qaq=n%P;
fp(i,1,min(m,n)){
res=add(res,mul(qaq,C(m-1,i-1)));
// printf("%lld\n",mul(qaq,C(m-1,i-1)));
qaq=qaq*inv[i+1]%P*((n-i)%P)%P;
}printf("%lld\n",res);
}
}return 0;
}

P5135 painting(组合数)的更多相关文章

  1. hdu 4810 Wall Painting (组合数+分类数位统计)

    Wall Painting Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  2. HDU-4810-wall Painting(二进制, 组合数)

    链接: https://vjudge.net/problem/HDU-4810 题意: Ms.Fang loves painting very much. She paints GFW(Great F ...

  3. agc023C - Painting Machines(组合数)

    题意 题目链接 有\(n\)个位置,每次你需要以\(1 \sim n-1\)的一个排列的顺序去染每一个颜色,第\(i\)个数可以把\(i\)和\(i+1\)位置染成黑色.一个排列的价值为最早把所有位置 ...

  4. [Arc062] Painting Graphs with AtCoDeer

    [Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...

  5. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  6. 计算一维组合数的java实现

    背景很简单,就是从给定的m个不同的元素中选出n个,输出所有的组合情况! 例如:从1到m的自然数中,选择n(n<=m)个数,有多少种选择的组合,将其输出! 本方案的代码实现逻辑是比较成熟的方案: ...

  7. Noip2016提高组 组合数问题problem

    Day2 T1 题目大意 告诉你组合数公式,其中n!=1*2*3*4*5*...*n:意思是从n个物体取出m个物体的方案数 现给定n.m.k,问在所有i(1<=i<=n),所有j(1< ...

  8. C++单元测试 之 gtest -- 组合数计算.

    本文将介绍如何使用gtest进行单元测试. gtest是google单元测试框架.使用非常方便. 首先,下载gtest (有些google项目包含gtest,如 protobuf),复制目录即可使用. ...

  9. NOIP2011多项式系数[快速幂|组合数|逆元]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

随机推荐

  1. AppStore审核--17.5

    本文转载至 http://blog.csdn.net/addychen/article/details/39672185 感谢原文作者分享 AppStore审核 为了确保用户理解应用如何使用他们的数据 ...

  2. 通过css选择器class给元素添加cursor的坑

    笔者在chrome中遇到了奇特的问题,在通过class给元素添加cursor的自定义图片时.出现了"Invald property value"提示,crosshair.help等 ...

  3. EasyPusher RTSP直播之RTP数据包格式解析

    -本篇由团队成员Fantasy供稿! RTP包头格式 码流总体结构 h264的功能分为两层,视频编码层(VCL)和网络提取层(NAL).H.264 的编码视频序列包括一系列的NAL 单元,每个NAL ...

  4. 代码空间项目 -- InstantiationException的异常

    java.lang.InstantiationException实例化异常.当试图通过newInstance()方法创建某个类的实例,而该类是一个抽象类或接口时,抛出该异常. 这次项目中查询type时 ...

  5. [bzoj 1449] 球队收益(费用流)

    [bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...

  6. div和span、relative和absolute、display和visibility的区别

    一.div和span的区别 div是一个块级元素,可以包含段落,表格等内容,用于放置不同的内容.一般我们在网页通过div来布局定位网页中的每个区块. span是一个内联元素,没有实际意义,它的存在纯粹 ...

  7. 基于BASYS2的VHDL程序——数字钟

    在编电子表时发现FPGA求余,取模只能针对2的次方.毕竟是数字的嘛! 时钟用到了动态刷新数码管.以一个大于50Hz的速度刷新每一个数码管. 因为数码管只有四个,只写了分针和秒针. 代码如下: libr ...

  8. Android studio 添加assets文件夹

    我们知道Eclipse创建的工程默认是有个assets文件夹的,但是Android studio默认没有帮我们创建,那么我们就自己创建一个就好啦. (1)手动创建 在项目的顶部有个下拉,默认选择的是A ...

  9. 【Selenium】跳转问题

    /** * rewrite the get method, adding user defined log</BR> * 地址跳转方法,使用WebDriver原生get方法,加入失败重试的 ...

  10. Java对象的初始化

    昨天写的代码被殷老师诟病了,因为太「丑陋」. 原来我的代码结构是这样的: public class ColorRocognizer { ..... public static void main(St ...