[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
试题描述
IOI 的比赛开始了。Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 ……
接着他们发现自己收到了一封电子邮件:
我们在考场上放置了 N 个炸弹。如果建立一个直线坐标系(数轴)的话,第 i 个炸弹的坐标是 Xi,爆炸半径是 Ri,当一个炸弹爆炸时,如果另一个炸弹所在位置 Xj 满足:
Xi−Ri≤Xj≤Xi+Ri
那么,炸弹 j 也会被引爆。
若 i 和 j 满足上述关系式,称 i 能直接引爆 j。若 i 不能直接引爆 j,但引爆 i 会导致 j 爆炸,则称 i 能间接引爆 j。
我可以告诉你们,这些炸弹满足一个性质:若引爆炸弹 A 会直接或间接地引爆炸弹 B,则引爆炸弹 B 一定不会直接或间接地引爆炸弹 A。
有能耐就拆掉炸弹吧!记住,如果其它选手有所动作的话,后果你们应该知道!
吃惊的 Jsp 和 Rlc 开始了调(报)查(警)。之后,这些话被证实了。并且两人还发现了另一个性质:
定义炸弹 A 到 B 的“引爆距离”(用 d(A,B) 表示)为最长的满足以下条件的序列 a1,a2,...,an 的长度:
- ai 互不相同,且为 [1,N] 中的整数;
- ai 能直接引爆 ai+1;
- a1=A,an=B。
那么这个性质可以表述为:若 d(A,B)=3,A 一定能直接引爆 B。
经过进一步研究,Rlc 发现最为安全的方法是这样:首先选出若干个关键炸弹安装监测器,然后慢慢拆除。
因为炸弹的某些特性,安装监测器的炸弹必须组成一个有序序列 a1,a2,...,an,且满足:
- ai 互不相同,且为 [1,N] 中的整数。
- ai 能直接或间接引爆 ai+1。
Rlc 设计了一个衡量监测器安装方案的安全程度的方法:
首先可以测出每个炸弹的特征值 vi。
那么监测器安装方案的安全程度为:∑i=1~n−1F(va_i,va_(i+1)),其中 F(x,y)=(x⊕y+xy) mod 998244353(⊕ 表示二进制按位异或,本题中按位异或的优先级高于乘法和加法)。
现在她想知道,对于 [1,N] 中的每个整数 i,如果她安装监测器的最后一个炸弹是 i(即 an=i),安全程度最大是多少。
请特别注意,题面中大写的 N 表示炸弹总数,小写 n 表示上下文中的序列长度,请勿混淆。
输入
第二行 N 个整数 X1,X2,...,XN,表示炸弹的坐标。
第三行 N 个整数 R1,R2,...,RN,表示炸弹的爆炸半径。
第四行 N 个整数 v1,v2,...,vN,表示炸弹的特征值。
输出
输入示例
- -
输出示例
数据规模及约定
对于所有数据,1≤N≤3×105,0≤vi<998244353,0≤Ri≤1018,∣Xi∣≤1018。
题解
这道题题意如此长,其实是想方设法创造条件让暴力 AC。。。
首先根据性质 1,它是个 DAG,自然会想到 dp。
然后根据性质 1&3,因为两个炸弹不能互相炸到对方,假设炸弹 A 的范围包含了 B,那么 B 的半径(记做 B_r)一定小于 A_r 的一半,以此类推,会发现对于任意两个炸弹 u, v,如果 u 直接炸到了 v,那么从 v 向 u 连边,那么这个图的最长路径长度不会超过 log max{ Ri }。
发现直接连边数太多了,过不了(大概有 45 分),那么我们直连哪些直接炸到的并且离得最近的边(这个可以从左到右、从右到左扫一遍分别维护 Xi + Ri 和 Xi - Ri 递减和递增的单调栈),这样边数就是 O(n) 的了(证明比较简单,详见 LOJ 官方题解)。
dp 转移的时候暴力沿着路径 dfs 一下,沿途中遇到所有的 dp 值都用来更新一下就好了。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 300010
#define maxm 600010
#define LL long long
#define hzt1 998244353 int n, m, head[maxn], nxt[maxm], to[maxm], perm[maxn];
LL X[maxn], R[maxn], v[maxn]; void AddEdge(int a, int b) {
to[++m] = b; nxt[m] = head[a]; head[a] = m;
return ;
} int S[maxn], top;
LL f[maxn];
void dfs(int st, int u);
LL search(int u);
void dfs(int st, int u) {
// printf("u: %d\n", u);
f[st] = max(f[st], search(u) + ((v[st] ^ v[u]) + v[st] * v[u]) % hzt1);
for(int e = head[u]; e; e = nxt[e]) dfs(st, to[e]);
return ;
}
LL search(int u) {
if(f[u] >= 0) return f[u];
f[u] = 0;
for(int e = head[u]; e; e = nxt[e]) dfs(u, to[e]);
return f[u];
} bool cmp(int a, int b) { return X[a] < X[b]; } int main() {
n = read();
for(int i = 1; i <= n; i++) X[i] = read(), perm[i] = i;
for(int i = 1; i <= n; i++) R[i] = read();
for(int i = 1; i <= n; i++) v[i] = read();
sort(perm + 1, perm + n + 1, cmp); // for(int i = 1; i <= n; i++) printf("%lld %lld [%d]\n", X[perm[i]], R[perm[i]], perm[i]);
for(int i = 1; i <= n; i++) {
while(top && X[S[top]] + R[S[top]] < X[perm[i]]) top--;
if(top) AddEdge(perm[i], S[top]); // , printf("type1: %d -> %d\n", perm[i], S[top]);
while(top && X[S[top]] + R[S[top]] <= X[perm[i]] + R[perm[i]]) top--;
S[++top] = perm[i];
}
top = 0;
for(int i = n; i; i--) {
while(top && X[S[top]] - R[S[top]] > X[perm[i]]) top--;
if(top) AddEdge(perm[i], S[top]); // , printf("type2: %d -> %d\n", perm[i], S[top]);
while(top && X[S[top]] - R[S[top]] >= X[perm[i]] - R[perm[i]]) top--;
S[++top] = perm[i];
}
memset(f, -1, sizeof(f));
for(int i = 1; i <= n; i++) printf("%lld\n", search(i)); return 0;
}
我还是第一次写代码让两个函数互相调用。。。
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)的更多相关文章
- 「LibreOJ β Round #3」绯色 IOI(抵达)
[题解] 我们可以发现叶子节点的关联点一定是它的父亲节点,那么我们dfs一遍就可以求出所有节点的关联点,或者判断出无解. 对于每个点i,它的关联点u的危险度肯定比它连接的其他点vi的危险度小,我们从u ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分
$ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...
随机推荐
- JavaScript内存泄露,闭包内存泄露如何解决
本文原链接:https://cloud.tencent.com/developer/article/1340979 JavaScript 内存泄露的4种方式及如何避免 简介 什么是内存泄露? Java ...
- 掘金 里面 写文章 带目录的时候 用#(空格)标题 后面用## title,一个页面只有一个H1
掘金 里面 写文章 带目录的时候 用#(空格)标题 后面用## title,一个页面只有一个H1
- samba修改smb.conf后,不需要重启服务,就可生效
在修改完smb.conf后,不需要重启服务.在Centos7.3与Ubuntu18.04上验证都没有问题. 猜测可能的原因:samba是在客户端进行连接时,smb服务程序读取smb.conf配置文件信 ...
- python之道09
整理函数相关知识点,写博客. 看代码写结果 1. def func(): for i in range(3): print(i) return 666 print(func()) # 0 1 2 66 ...
- MySql数据库中where的使用
SELECT * from runoob_tbl WHERE runoob_author='菜鸟教程'; MySQL 的 WHERE 子句的字符串比较是不区分大小写的. 你可以使用 BINARY 关键 ...
- linux - mysql 安装教程
环境介绍>>>>>>>>>>>>>>>>>> 操作系统:Centos 7 mysql数据库版 ...
- NOIP模拟赛 麻将
[题目描述] 众所周知,麻将是我们国家的国粹.这段时间,小D也迷上了麻将这个老少皆宜的游戏. 小D觉得这些不同规则的麻将太麻烦了,所以他集合了很多种麻将规则创造出了一套D麻将.下面是D麻将的几个特点: ...
- [LUOGU] NOIP提高组模拟赛Day1
题外话:以Ingress为题材出的比赛好评,绿军好评 T1 考虑枚举第\(i\)个人作为左边必选的一个人,那左边剩余\(i-1\)个人,选法就是\(2^{i-1}\),也就是可以任意选或不选,右侧剩余 ...
- Docker 容器的跨主机连接
使用网桥实现跨主枳容器连接 不推荐 使用OpenvSwitch实现跨主机容器连接 OpenvSwitch: OpenvSwitch是一个高质量的.多层虚拟交换枳,使用开源Apache2.0许可协议,由 ...
- 模拟发送http请求的工具推荐
做网站开发时,经常需要发送请求来测试自己的代码是否OK,这时候模拟发送http请求的工具就起到了很大的作用.特别是需要在请求带header时就更加的有必要使用工具.下面推荐的工具有的是基于系统开发的程 ...