题目

小A有一个1-2N的排列A[1..2N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到右划分为2{N-i+1}段,每段恰好包括2{i-1}个数,然后整体交换其中两段.小A想知道可以将数组A从小到大排序的不同的操作序列有多少个,小A认为两个操作序列不同,当且仅当操作个数不同,或者至少一个操作不同(种类不同或者操作位置不同).

下面是一个操作事例:

N=3,A[1..8]=[3,6,1,2,7,8,5,4].

第一次操作,执行第3种操作,交换A[1..4]和A[5..8],交换后的A[1..8]为[7,8,5,4,3,6,1,2].

第二次操作,执行第1种操作,交换A[3]和A[5],交换后的A[1..8]为[7,8,3,4,5,6,1,2].

第三次操作,执行第2中操作,交换A[1..2]和A[7..8],交换后的A[1..8]为[1,2,3,4,5,6,7,8].

输入格式

第一行,一个整数N

第二行,2N个整数,A[1..2N]

输出格式

一个整数表示答案

输入样例

3

7 8 5 6 1 2 4 3

输出样例

6

提示

100%的数据, 1<=N<=12.

题解

我们可以大力猜想出操作的顺序可以是任意的

随便试试就会发现

仔细观察发现,所有的操作区间只有 完全包含关系 or 不相交

对于一个合法操作序列中的相邻两个操作\(a\)和\(b\),我们尝试交换其顺序

①若\(a\)、\(b\)不相交,那么显然无影响

②若\(a\)、\(b\)相交,那么一定是包含关系,不妨设\(|a| < |b|\)

如果\(a\)的一个操作区间在\(b\)中,那么在操作\(b\)前后交换\(a\)中的两个区间显然不改变顺序

如果\(a\)的两个操作区间都在\(b\)中,那么在\(b\)操作前后这两个区间内的元素是不变的,我们只需在\(b\)操作之后找到原来的两个区间进行交换,最后的序列仍然不变

这就粗略地证明了

既然顺序无关,我们就可以从小枚举了

因为大区间操作无法影响其内部,所以我们每一次操作都要保证下一级区间内部一定是按+1递增顺序的

具体地,对于第\(i\)种操作,操作区间长度为\(2^{i - 1}\),那么我们找到第\(i + 1\)种操作的所有区间,如果其内部不是按+1递增的,那么这个区间一定要被操作

如果这样的区间数量\(>3\),显然我们是无法全部顾及的,直接返回

如果这样的区间数量为1,那么只需要交换这个区间内部

如果这样的区间数量为2,若存在合法方案,一定是交换这两个区间\(2\)个子区间的一个,共有\(4\)中情况,逐一检验即可

最后,如果一个操作集合\(S\)合法,那么将贡献\(|S|!\)的方案数

如果说每一层只会有一种情况合法的话,总的复杂度\(O(n * 2^n)\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 13,maxm = 10000,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int a[maxm],n,N,chs;
LL ans,fac[maxn];
bool isorder(int l,int len){
for (int i = 1; i < len; i++) if (a[l + i] != a[l + i - 1] + 1) return false;
return true;
}
void Swap(int u,int v,int len){
for (int i = 0; i < len; i++) swap(a[u + i],a[v + i]);
}
void dfs(int dep){
if (dep > n){
if (isorder(1,N)) ans += fac[chs];
return;
}
int len = 1 << dep,x = 0,y = 0;
for (int i = 1; i <= N; i += len){
if (!isorder(i,len)){
if (!x) x = i;
else if (!y) y = i;
else return;
}
}
if (!x && !y) dfs(dep + 1);
else if (x && !y){
chs++;
Swap(x,x + (len >> 1),(len >> 1));
dfs(dep + 1);
Swap(x,x + (len >> 1),(len >> 1));
chs--;
}
else if (x && y){
chs++;
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++){
Swap(x + i * (len >> 1),y + j * (len >> 1),(len >> 1));
if (isorder(x,len) && isorder(y,len))
dfs(dep + 1);
Swap(x + i * (len >> 1),y + j * (len >> 1),(len >> 1));
}
chs--;
}
}
int main(){
fac[0] = 1;
for (int i = 1; i <= 12; i++) fac[i] = fac[i - 1] * i;
n = read(); N = (1 << n);
REP(i,N) a[i] = read();
dfs(1);
cout << ans << endl;
return 0;
}

BZOJ3990 [SDOI2015]排序 【搜索】的更多相关文章

  1. [bzoj3990][SDOI2015]排序-搜索

    Brief Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<= ...

  2. BZOJ 3990: [SDOI2015]排序 [搜索]

    3990: [SDOI2015]排序 题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段.问是这个序列有序的操作方案数,两个操作序列不同,当且仅当 ...

  3. [BZOJ3990][SDOI2015]排序(DFS)

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 902  Solved: 463[Submit][Status][ ...

  4. [BZOJ3990]:[SDOI2015]排序(搜索)

    题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...

  5. Bzoj3990 [SDOI2015]排序

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 651  Solved: 338 Description 小A有一个1-2^N的排列A[1..2^N], ...

  6. BZOJ 3990 [SDOI2015]排序 ——搜索

    [题目分析] 可以发现,操作的先后顺序是不影响结果的,那么答案就是n!的和. 可以从小的步骤开始搜索,使得每一个当前最小的块都是上升的数列,然后看看是否可行即可. 复杂度好像是4^n [代码](哪里写 ...

  7. BZOJ 3990: [SDOI2015]排序(搜索+剪枝)

    [SDOI2015]排序 Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1< ...

  8. 006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate

    006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate https://www.cnblogs.com/delphixx/p/1 ...

  9. 【LG3322】[SDOI2015]排序

    [LG3322][SDOI2015]排序 题面 洛谷 题解 交换顺序显然不影响答案,所以每种本质不同的方案就给答案贡献次数的阶乘. 从小往大的交换每次至多\(4\)中决策,复杂度\(O(4^n)\). ...

随机推荐

  1. SQLServer死锁

    死锁的四个必要条件:互斥条件(Mutual exclusion):资源不能被共享,只能由一个进程使用.请求与保持条件(Hold and wait):已经得到资源的进程可以再次申请新的资源.非剥夺条件( ...

  2. C07 模块化开发信息管理系统案例

    目录 需求分析 问题分析 开发阶段 需求分析 总体需求 学员信息管理系统支持以下功能 增加学员信息功能 删除学员信息功能 查询学员信息功能 修改学员信息功能 输出所有学员信息功能 退出系统 其他需求 ...

  3. javaweb基础(7)_HttpServletResponse原理详解

    Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象.request和response对象即然代表请求和响应,那我们要 ...

  4. (转发)IOS高级开发~Runtime(三)

    11.系统类的方法实现部分替换 - (void) methodExchange { Method m1 = class_getInstanceMethod([NSStringclass],@selec ...

  5. C# 获取Google Chrome的书签

    其实这个很简单,就是读取一个在用户目录里面的一个Bookmarks文件就好了. 先建立几个实体类 public class GoogleChrome_bookMark_meta_info { publ ...

  6. CentOs 6.5设置使用私钥登录关闭ssh的密码登录修改ssh默认端口

    使用SecureCRT工具创建RSA公钥和私钥 [选项]=>[会话选项] 然后在弹出对话框中选择[公钥]然后点击[属性]: 在弹出窗口中选中[使用会话公钥设置],点击[创建身份文件]按钮: 然后 ...

  7. SSH框架面试总结----1

    1:struts2的工作流程 1)客户端浏览器发出HTTP请求. 2)根据web.xml配置,HTTP请求会被FilterDispatcher接收. 3)根据struts.xml,找到对应的Actio ...

  8. Linux菜鸟起飞之路【六】权限管理(二)

    一.权限信息详解   ls -l 文件 //查看文件权限写法1 ll 文件 //查看文件权限写法2 ls -dl 目录 //查看目录权限写法1 ll -d 目录 //查看目录权限写法2 文件权限格式: ...

  9. wdcp 使用说明总结(持续更新中。。。)

    wdcp 使用说明总结(持续更新中...) 1.移动文件时,如果是上一层,直接填写../即可

  10. 【php】【特殊案例】数组调用方法

    As of PHP 5.4.0, you can call any callable stored in a variable. <?php class Foo { static functio ...