P1260 工程规划 (差分约束)
题目链接
Solution
差分约束.
差分约束似乎精髓就两句话:
- 当我们把不等式整理成 \(d[a]+w<=d[b]\) 时,我们求最长路。
- 整理成 \(d[a]+w>=d[b]\) 时,我们求最短路。
所以对于本题的式子 \(Ti-Tj \leq b\) 可以写成: \(T_i-b \leq T_j\).
然后就从 \(i\) 向 \(j\) 连一条 \(-b\) 的边然后跑最长路即可.
按式子可以随便搞.
Code
#include<bits/stdc++.h>
using namespace std;
const int maxn=5008;
struct sj{
int to,next,w;
}a[maxn];
int kk,inf,n,m,cnt[maxn],flag;
int head[maxn],size;
int v[maxn],dis[maxn];
void add(int x,int y,int z)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
a[size].w=z;
}
void SPFA(int s)
{
queue<int>q;
q.push(s); dis[s]=0;
while(!q.empty())
{
int x=q.front(); q.pop();
cnt[x]++;
if(cnt[x]>n){{cout<<"NO SOLUTION"<<endl;exit(0);}}
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(dis[tt]>dis[x]+a[i].w)
{
dis[tt]=dis[x]+a[i].w;
if(!v[tt])
q.push(tt),v[tt]=1;
}
}
v[x]=0;
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(y,x,z);
}
memset(dis,127,sizeof(dis));
for(int i=1;i<=n;i++)
{
if(cnt[i])continue;
SPFA(i);
}
for(int i=1;i<=n;i++)
kk=min(kk,dis[i]);
for(int i=1;i<=n;i++)
printf("%d\n",dis[i]-kk);
}
P1260 工程规划 (差分约束)的更多相关文章
- 2021.08.16 P1260 工程规划(差分约束)
2021.08.16 P1260 工程规划(差分约束) 重点: 1.跑最短路是为了满足更多约束条件. P1260 工程规划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 造 ...
- luogu P1260 工程规划(luogu wa)don't know way
题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...
- 洛谷—— P1260 工程规划
https://www.luogu.org/problem/show?pid=1260 题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000). ...
- 洛谷 P1260 工程规划(差分约束)
题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...
- luogu P1260 工程规划
题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...
- 【转】最短路&差分约束题集
转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...
- [poj 3159]Candies[差分约束详解][朴素的考虑法]
题意 编号为 1..N 的人, 每人有一个数; 需要满足 dj - di <= c 求1号的数与N号的数的最大差值.(略坑: 1 一定要比 N 大的...difference...不是" ...
- 转载 - 最短路&差分约束题集
出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★ ...
- Candies-POJ3159差分约束
Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...
随机推荐
- 交叉熵cross entropy和相对熵(kl散度)
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...
- python_105_类的特殊成员方法
aa.py class C(): def __init__(self): self.name='QiZhiguang' 类的特殊成员方法: # 1. __doc__ 表示类的描述信息 class Do ...
- 虚IP切换原理
高可用性HA(High Availability)指的是通过尽量缩短因日常维护操作(计划)和突发的系统崩溃(非计划)所导致的停机时间,以提高系统和应用的可用性.HA系统是目前企业防止核心计算机系统因故 ...
- mysql中的空值问题
MySQL的查询如果需要用到空值的情况下,where后面的条件就需要注意了 MySQL中的表示空值的方法:is null 和 is not null 比如:select * from user whe ...
- Bootstrap历练实例:大小Well
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- C#数组添加元素
一.向数组添加元素 在C#中,只能在动态数组ArrayList类中向数组添加元素.因为动态数组是一个可以改变数组长度和元素个数的数据类型. 示例: using System;using System. ...
- webgis技术在智慧城市综合治理(9+X)网格化社会管理平台(综治平台)的应用研究
综治中心9+X网格化社会管理平台 为落实中央关于加强创新社会治理的要求,适应国家治理体系和治理能力现代化要求,以基层党组织为核心,以整合资源.理顺关系.健全机制.发挥作用为目标,规范街道.社区综治中心 ...
- comboBox 下拉宽度自适应
///适用combobox绑定datatable private void comboBox_DataSourceChanged(object sender, EventArgs e) { Combo ...
- JavaScript中面向对象的三大特性(一个菜鸟的不正经日常)
经过几天的学习,把jQuery给啃会了,但是运用的还不算特别熟练,总感觉自己在JavaScript方面的基础十分欠缺,所以继续拾起JavaScript,开始更好的编程之旅~ 今天学的是JavaScri ...
- JWT的使用流程
JWT的实现原理 一篇文章告诉你JWT的实现原理 发布于 3 个月前 作者 axetroy 3097 次浏览 来自 分享 在使用 JWT 的时候,有没有想过,为什么我们需要 JWT?以及它的工作原理是 ...