bvlc_reference_caffenet.caffemodel
#uncoding:utf-8
# set up Python environment: numpy for numerical routines, and matplotlib for plotting
import numpy as np
import matplotlib.pyplot as plt
# display plots in this notebook
#%matplotlib inline # set display defaults
plt.rcParams['figure.figsize'] = (10, 10) # large images
plt.rcParams['image.interpolation'] = 'nearest' # don't interpolate: show square pixels
plt.rcParams['image.cmap'] = 'gray' # use # The caffe module needs to be on the Python path;
# we'll add it here explicitly.
import sys
caffe_root = '/home/sea/caffe/' # this file should be run from {caffe_root}/examples (otherwise change this line)
sys.path.insert(0, caffe_root + 'python') import caffe
# If you get "No module named _caffe", either you have no import os
if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):
print 'CaffeNet found.'
else:
print 'Downloading pre-trained CaffeNet model...'
#!../scripts/download_model_binary.py ../models/bvlc_reference_caffenet caffe.set_mode_cpu() model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
print "定义网络结构:"
net = caffe.Net(model_def, # defines the structure of the model
model_weights, # contains the trained weights
caffe.TEST) # use test mode (e.g., don't perform dropout) print "加载平均图:"
# load the mean ImageNet image (as distributed with Caffe) for subtraction
mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values
print 'mean-subtracted values:', zip('BGR', mu) print "初始化转换输入数据格式转换器:"
# create transformer for the input called 'data'
transformer = caffe.io.Transformer({
'data': net.blobs['data'].data.shape}) print "设置输入数据格式转换器参数:"
transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension
transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR print "设置输入数据格式:"
# set the size of the input (we can skip this if we're happy
# with the default; we can also change it later, e.g., for different batch sizes)
net.blobs['data'].reshape(50, # batch size
3, # 3-channel (BGR) images
227, 227) # image size is 227x227 print "加载猫:"
image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
transformed_image = transformer.preprocess('data', image)
plt.imshow(image)
plt.show() print "将猫加载到内存:"
# copy the image data into the memory allocated for the net
net.blobs['data'].data[...] = transformed_image ### perform classification
output = net.forward()
output_prob = output['prob'][0] # the output probability vector for the first image in the batch
print 'predicted class is:', output_prob.argmax() print "加载图像集合标签:"
# load ImageNet labels
labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
if not os.path.exists(labels_file):
print "/data/ilsvrc12/get......sh"
#!../data/ilsvrc12/get_ilsvrc_aux.sh labels = np.loadtxt(labels_file, str, delimiter='\t')
print 'output label:', labels[output_prob.argmax()] # sort top five predictions from softmax output
top_inds = output_prob.argsort()[::-1][:5] # reverse sort and take five largest items print "打印分类结果:概率和标签:"
print 'probabilities and labels:'
zip(output_prob[top_inds], labels[top_inds]) #%timeit net.forward() print "切换到gpu模式:"
caffe.set_device(0) # if we have multiple GPUs, pick the first one
caffe.set_mode_gpu()
net.forward() # run once before timing to set up memory
#%timeit net.forward() # for each layer, show the output shape
for layer_name, blob in net.blobs.iteritems():
print layer_name + '\t' + str(blob.data.shape) for layer_name, param in net.params.iteritems():
print layer_name + '\t' + str(param[0].data.shape), str(param[1].data.shape) print "定义可视化直方图的函数:"
def vis_square(data):
"""Take an array of shape (n, height, width) or (n, height, width, 3)
and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
# normalize data for display
data = (data - data.min()) / (data.max() - data.min()) # force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = (((0, n ** 2 - data.shape[0]),
(0, 1), (0, 1)) # add some space between filters
+ ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one)
data = np.pad(data, padding, mode='constant', constant_values=1) # pad with ones (white) # tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.imshow(data); plt.axis('off')
# plt.show() print "显示:直方图--conv1"
# the parameters are a list of [weights, biases]
filters = net.params['conv1'][0].data
vis_square(filters.transpose(0, 2, 3, 1))
# plt.show() print "显示:直方图:conv5"
feat = net.blobs['conv1'].data[0, :36]
vis_square(feat)
# plt.show() print "显示:直方图, pool5"
feat = net.blobs['pool5'].data[0]
vis_square(feat)
# plt.show() print "显示:hist -fc6 "
feat = net.blobs['fc6'].data[0]
plt.subplot(2, 1, 1)
plt.plot(feat.flat)
plt.subplot(2, 1, 2)
_ = plt.hist(feat.flat[feat.flat > 0], bins=100)
# plt.show() print "显示:t--prob"
t = net.blobs['prob'].data[0]
plt.figure(figsize=(15, 3))
# plt.plot(feat.flat)
# plt.show() # download an image
#my_image_url = "..." # paste your URL here
# for example:
# my_image_url = "https://upload.wikimedia.org/wikipedia/commons/b/be/Orang_Utan%2C_Semenggok_Forest_Reserve%2C_Sarawak%2C_Borneo%2C_Malaysia.JPG"
#!wget -O image.jpg $my_image_url print "加载图像"
# transform it and copy it into the net
#image = caffe.io.load_image('/home/sea/shareVm/images/monkey/2.jpg')
image=caffe.io.load_image('/home/sea/Downloads/555eae4532988a6dc175031eed969fc0.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data', image) # perform classification
net.forward() # obtain the output probabilities
output_prob = net.blobs['prob'].data[0]
# print "output_prob = ", output_prob # sort top five predictions from softmax output
top_inds = output_prob.argsort()[::-1][:5]
print "top_inds = ", top_inds print "显示:图像"
plt.imshow(image)
plt.show() print "打印分类结果:"
print 'probabilities and labels:'
zd = zip(output_prob[top_inds], labels[top_inds])
print "结果: ", zd
for e in zd:
print e #copy------------------------------------------------------------------------------- output_prob = output['prob'][0] # the output probability vector for the first image in the batch
print 'predicted class is:', output_prob.argmax()
indd = output_prob.argmax()
top_inds = indd
print "加载图像集合标签:"
print (output_prob[top_inds], labels[top_inds])
bvlc_reference_caffenet.caffemodel的更多相关文章
- Caffe学习系列(20):用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...
- bvlc_reference_caffenet网络权值可视化
一.网络结构 models/bvlc_reference_caffenet/deploy.prototxt 二.显示conv1的网络权值 clear; clc; close all; addpath( ...
- 用训练好的caffemodel来进行分类
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...
- caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel
bvlc_reference_caffenet.caffemodel --- name: BAIR/BVLC CaffeNet Model caffemodel: bvlc_reference_caf ...
- 【神经网络与深度学习】用训练好的caffemodel来进行分类
现在我正在利用imagenet进行finetune训练,待训练好模型,下一步就是利用模型进行分类.故转载一些较有效的相关博客. 博客来源:http://www.cnblogs.com/denny402 ...
- caffe_实战之两个简单的例子(物体分类和人脸检测)
一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplot ...
- 【转】Caffe初试(十)命令行解析
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...
- 深度学习笔记(六)finetune
转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我 ...
- Caffe框架下的图像回归测试
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...
随机推荐
- win 7 取得最高权限
以管理员身份运行cmd,然后输入: net user administrator /active:yes 然后注销,就会看到你原来的用户已经是最高权限的用户了.以后做的操作都是最高权限的操作.
- Node.js 文件输入
最近在尝试用 JavaScript (Node.js) 写题.为此,特地看了 ECMAScript 2017 Language Specification(大雾).写题一般是从文件输入,确切地说是,将 ...
- THUWC2018爆0记
Day-2 心里想到要明天就要出发,去长沙膜拜各省dalao,心里挺激动,, 细细整理着行囊 Day-1 一觉睡到天明,正好是星期一,大家都要上课,也没怎么听物理老师讲什么. 到了9:30,就背着包拖 ...
- NOIP赛前模拟20171027总结
题目: 1.寿司 给定一个环形的RB串··要求经过两两互换后RB分别形成两段连续区域,求最少操作次数(算法时间O(n)) 2.金字塔 给定一个金字塔的侧面图有n层··已知每一层的宽度··高度均为1·· ...
- bzoj 2799 [Poi2012]Salaries 性质+二分
题目大意 给出一棵n个结点的有根树,结点用正整数1~n编号. 每个结点有一个1~n的正整数权值,不同结点的权值不相同, 并且一个结点的权值一定比它父结点的权值小(根结点的权值最大,一定是n). 现在有 ...
- APUE 学习笔记(三) 文件和目录
1. 文件类型 文件类型信息包含在 struct stat 里的 st_mode 成员 (1)普通文件,unix内核并不区分文本文件和二进制文件 (2)目录文件,这种文件包含了其他文件的名字以及指向这 ...
- poj 3532 Resistance
---恢复内容开始--- Resistance Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 1289 Accepte ...
- net1:DateTime,Application与Session,
原文发布时间为:2008-07-29 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Data;using System.Configuration ...
- 【MFC】利用单一对话框内的分页技术实现向导功能(转)
原文转自 http://blog.csdn.net/yongh701/article/details/43793151 所谓的向导功能,在win32的程序中常常见于安装程序或者程序内的设置向导,该向导 ...
- hdu 4503(数学,概率)
湫湫系列故事——植树节 Time Limit: 1000/500 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total ...