#uncoding:utf-8
# set up Python environment: numpy for numerical routines, and matplotlib for plotting
import numpy as np
import matplotlib.pyplot as plt
# display plots in this notebook
#%matplotlib inline # set display defaults
plt.rcParams['figure.figsize'] = (10, 10) # large images
plt.rcParams['image.interpolation'] = 'nearest' # don't interpolate: show square pixels
plt.rcParams['image.cmap'] = 'gray' # use # The caffe module needs to be on the Python path;
# we'll add it here explicitly.
import sys
caffe_root = '/home/sea/caffe/' # this file should be run from {caffe_root}/examples (otherwise change this line)
sys.path.insert(0, caffe_root + 'python') import caffe
# If you get "No module named _caffe", either you have no import os
if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):
print 'CaffeNet found.'
else:
print 'Downloading pre-trained CaffeNet model...'
#!../scripts/download_model_binary.py ../models/bvlc_reference_caffenet caffe.set_mode_cpu() model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
print "定义网络结构:"
net = caffe.Net(model_def, # defines the structure of the model
model_weights, # contains the trained weights
caffe.TEST) # use test mode (e.g., don't perform dropout) print "加载平均图:"
# load the mean ImageNet image (as distributed with Caffe) for subtraction
mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values
print 'mean-subtracted values:', zip('BGR', mu) print "初始化转换输入数据格式转换器:"
# create transformer for the input called 'data'
transformer = caffe.io.Transformer({
'data': net.blobs['data'].data.shape}) print "设置输入数据格式转换器参数:"
transformer.set_transpose('data', (2,0,1)) # move image channels to outermost dimension
transformer.set_mean('data', mu) # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data', (2,1,0)) # swap channels from RGB to BGR print "设置输入数据格式:"
# set the size of the input (we can skip this if we're happy
# with the default; we can also change it later, e.g., for different batch sizes)
net.blobs['data'].reshape(50, # batch size
3, # 3-channel (BGR) images
227, 227) # image size is 227x227 print "加载猫:"
image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
transformed_image = transformer.preprocess('data', image)
plt.imshow(image)
plt.show() print "将猫加载到内存:"
# copy the image data into the memory allocated for the net
net.blobs['data'].data[...] = transformed_image ### perform classification
output = net.forward()
output_prob = output['prob'][0] # the output probability vector for the first image in the batch
print 'predicted class is:', output_prob.argmax() print "加载图像集合标签:"
# load ImageNet labels
labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
if not os.path.exists(labels_file):
print "/data/ilsvrc12/get......sh"
#!../data/ilsvrc12/get_ilsvrc_aux.sh labels = np.loadtxt(labels_file, str, delimiter='\t')
print 'output label:', labels[output_prob.argmax()] # sort top five predictions from softmax output
top_inds = output_prob.argsort()[::-1][:5] # reverse sort and take five largest items print "打印分类结果:概率和标签:"
print 'probabilities and labels:'
zip(output_prob[top_inds], labels[top_inds]) #%timeit net.forward() print "切换到gpu模式:"
caffe.set_device(0) # if we have multiple GPUs, pick the first one
caffe.set_mode_gpu()
net.forward() # run once before timing to set up memory
#%timeit net.forward() # for each layer, show the output shape
for layer_name, blob in net.blobs.iteritems():
print layer_name + '\t' + str(blob.data.shape) for layer_name, param in net.params.iteritems():
print layer_name + '\t' + str(param[0].data.shape), str(param[1].data.shape) print "定义可视化直方图的函数:"
def vis_square(data):
"""Take an array of shape (n, height, width) or (n, height, width, 3)
and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
# normalize data for display
data = (data - data.min()) / (data.max() - data.min()) # force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = (((0, n ** 2 - data.shape[0]),
(0, 1), (0, 1)) # add some space between filters
+ ((0, 0),) * (data.ndim - 3)) # don't pad the last dimension (if there is one)
data = np.pad(data, padding, mode='constant', constant_values=1) # pad with ones (white) # tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.imshow(data); plt.axis('off')
# plt.show() print "显示:直方图--conv1"
# the parameters are a list of [weights, biases]
filters = net.params['conv1'][0].data
vis_square(filters.transpose(0, 2, 3, 1))
# plt.show() print "显示:直方图:conv5"
feat = net.blobs['conv1'].data[0, :36]
vis_square(feat)
# plt.show() print "显示:直方图, pool5"
feat = net.blobs['pool5'].data[0]
vis_square(feat)
# plt.show() print "显示:hist -fc6 "
feat = net.blobs['fc6'].data[0]
plt.subplot(2, 1, 1)
plt.plot(feat.flat)
plt.subplot(2, 1, 2)
_ = plt.hist(feat.flat[feat.flat > 0], bins=100)
# plt.show() print "显示:t--prob"
t = net.blobs['prob'].data[0]
plt.figure(figsize=(15, 3))
# plt.plot(feat.flat)
# plt.show() # download an image
#my_image_url = "..." # paste your URL here
# for example:
# my_image_url = "https://upload.wikimedia.org/wikipedia/commons/b/be/Orang_Utan%2C_Semenggok_Forest_Reserve%2C_Sarawak%2C_Borneo%2C_Malaysia.JPG"
#!wget -O image.jpg $my_image_url print "加载图像"
# transform it and copy it into the net
#image = caffe.io.load_image('/home/sea/shareVm/images/monkey/2.jpg')
image=caffe.io.load_image('/home/sea/Downloads/555eae4532988a6dc175031eed969fc0.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data', image) # perform classification
net.forward() # obtain the output probabilities
output_prob = net.blobs['prob'].data[0]
# print "output_prob = ", output_prob # sort top five predictions from softmax output
top_inds = output_prob.argsort()[::-1][:5]
print "top_inds = ", top_inds print "显示:图像"
plt.imshow(image)
plt.show() print "打印分类结果:"
print 'probabilities and labels:'
zd = zip(output_prob[top_inds], labels[top_inds])
print "结果: ", zd
for e in zd:
print e #copy------------------------------------------------------------------------------- output_prob = output['prob'][0] # the output probability vector for the first image in the batch
print 'predicted class is:', output_prob.argmax()
indd = output_prob.argmax()
top_inds = indd
print "加载图像集合标签:"
print (output_prob[top_inds], labels[top_inds])

bvlc_reference_caffenet.caffemodel的更多相关文章

  1. Caffe学习系列(20):用训练好的caffemodel来进行分类

    caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...

  2. bvlc_reference_caffenet网络权值可视化

    一.网络结构 models/bvlc_reference_caffenet/deploy.prototxt 二.显示conv1的网络权值 clear; clc; close all; addpath( ...

  3. 用训练好的caffemodel来进行分类

    caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如 ...

  4. caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel

    bvlc_reference_caffenet.caffemodel --- name: BAIR/BVLC CaffeNet Model caffemodel: bvlc_reference_caf ...

  5. 【神经网络与深度学习】用训练好的caffemodel来进行分类

    现在我正在利用imagenet进行finetune训练,待训练好模型,下一步就是利用模型进行分类.故转载一些较有效的相关博客. 博客来源:http://www.cnblogs.com/denny402 ...

  6. caffe_实战之两个简单的例子(物体分类和人脸检测)

    一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplot ...

  7. 【转】Caffe初试(十)命令行解析

    caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下 ...

  8. 深度学习笔记(六)finetune

    转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我 ...

  9. Caffe框架下的图像回归测试

    Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...

随机推荐

  1. 【Luogu】P3705新生舞会(费用流+分数规划+二分答案)

    题目链接 本来以为自己可以做出来,结果……打脸了 (貌似来wc立了好几个flag了,都没竖起来) 不过乱蒙能蒙出一个叫“分数规划”的东西的式子还是很开心的 观察$C=\frac{a_{1}+a_{2} ...

  2. BZOJ 2501: [usaco2010 Oct]Soda Machine 离散+差分

    [usaco2010 Oct]Soda Machine Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 266  Solved: 182[Submit][ ...

  3. poj 1912 A highway and the seven dwarfs

    A highway and the seven dwarfs Time Limit: 8000MS   Memory Limit: 30000K Total Submissions: 2622   A ...

  4. bzoj 1196 公路修建问题

    bzoj 1196: [HNOI2006]公路修建问题 Description OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多.然而,由于该岛屿刚刚开发不久,所以那里的交通情 ...

  5. 【CF696B】Puzzles(树形DP,期望)

    题意:n 个节点的树,初始位置为 1 号节点,初始时间为 1.每次随机地走向任何一个没有走过的子树并且令时间 +1求问走到每一个点时的时间的期望值 思路:比较少见的一道自顶向下的树形DP dp[i]表 ...

  6. 转 廖雪峰 urllib

    http://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001432688314740a0 ...

  7. unity3d的模型规范

    1.不能存在单独的点和面,重复的面和点,不能被玩家所看到的模型也不必制作. 2.贴图要保证始终是2的倍数,但不必为正方形. 3.移动平台,如IP4,应该每个模型一般不超过300-1500个面,同屏不应 ...

  8. hdu 1787(欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. 【WEB基础】HTML & CSS 基础入门(7)表格

    表格的基本结构 表格是网页上最常见的元素,它除了可以用来展示数据,还常常被用来排版.虽然现在提倡使用DIV+CSS完成页面布局,但表格框架简单明了,对于繁杂的数据,一个简洁的表格能让其展现的极有条理. ...

  10. 洛谷——P2404 自然数的拆分问题

    题目背景 任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和. 题目描述 任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和. 输入输出格式 输入格式: 输入:待拆分的自然数n ...