传送门

先考虑一个贪心,对于一条边来说,如果当前这个序列中在它的子树中的元素个数为奇数个,那么这条边就会被一组匹配经过,否则就不会

考虑反证法,如果在这条边两边的元素个数都是偶数,那么至少有两组匹配经过它,那么把这两条路径都删去这条边可以更优。如果两边是奇数,一定至少有一条路径经过它,去掉这组匹配之后就变成了偶数的情况。证毕

然后是一个神仙的转化,我们对于一颗子树中的元素,在序列里标记为\(1\),否则为\(0\),那么这条边出现次数就是序列中长度为偶数且区间和为奇数的区间个数

考虑用线段树合并优化,对于每个节点,记\(t[p][0/1][0/1]\)表示节点\(p\)代表的区间中前缀和为偶数\(/\)奇数,下标为偶数\(/\)奇数的下标个数,然后线段树合并就行了

然而咱还是搞不明白为啥线段树上的区间要设为\([1,m+1]\)……有哪位知道为什么的请告诉咱一声……

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e5+5,M=N<<5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
struct eg{int v,nx,w;}e[N<<1];int head[N],tot;
inline void add_edge(R int u,R int v,R int w){e[++tot]={v,head[u],w},head[u]=tot;}
int sum[M],ls[M],rs[M],t[M][2][2],rt[N];
int n,m,ans,cnt,u,v,w;
void upd(int p,int l,int r){
sum[p]=0;
if(ls[p])sum[p]+=sum[ls[p]];
if(rs[p])sum[p]+=sum[rs[p]];
int x=ls[p]?sum[ls[p]]&1:0;
fp(i,0,1)fp(j,0,1){
t[p][i][j]=0;
if(ls[p])t[p][i][j]+=t[ls[p]][i][j];
if(rs[p])t[p][i][j]+=t[rs[p]][i^x][j];
}
int mid=(l+r)>>1;
if(!ls[p])t[p][0][0]+=(mid>>1)-((l-1)>>1),t[p][0][1]+=((mid+1)>>1)-(l>>1);
if(!rs[p])t[p][x][0]+=(r>>1)-(mid>>1),t[p][x][1]+=((r+1)>>1)-((mid+1)>>1);
}
void ins(int &p,int l,int r,int x){
if(!p){
p=++cnt;
t[p][0][0]=(r>>1)-((l-1)>>1);
t[p][0][1]=((r+1)>>1)-(l>>1);
}
if(l==r)return ++sum[p],void();
int mid=(l+r)>>1;
x<=mid?ins(ls[p],l,mid,x):ins(rs[p],mid+1,r,x);
upd(p,l,r);
}
int merge(int x,int y,int l,int r){
if(!x||!y)return x|y;
int mid=(l+r)>>1;
ls[x]=merge(ls[x],ls[y],l,mid);
rs[x]=merge(rs[x],rs[y],mid+1,r);
upd(x,l,r);
return x;
}
void dfs(int u,int fa){
go(u)if(v!=fa){
dfs(v,u);
ans=add(ans,mul(e[i].w,1ll*t[rt[v]][0][0]*t[rt[v]][1][0]%P+1ll*t[rt[v]][0][1]*t[rt[v]][1][1]%P));
rt[u]=merge(rt[u],rt[v],1,m+1);
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
fp(i,1,n-1)u=read(),v=read(),w=read(),add_edge(u,v,w),add_edge(v,u,w);
fp(i,1,m)u=read(),ins(rt[u],1,m+1,i);
dfs(1,0);
printf("%d\n",ans);
return 0;
}

uoj#388. 【UNR #3】配对树(线段树合并)的更多相关文章

  1. UOJ #164 [清华集训2015]V (线段树)

    题目链接 http://uoj.ac/problem/164 题解 神仙线段树题. 首先赋值操作可以等价于减掉正无穷再加上\(x\). 假设某个位置从前到后的操作序列是: \(x_1,x_2,..., ...

  2. 浅谈树套树(线段树套平衡树)&学习笔记

    0XFF 前言 *如果本文有不好的地方,请在下方评论区提出,Qiuly感激不尽! 0X1F 这个东西有啥用? 树套树------线段树套平衡树,可以用于解决待修改区间\(K\)大的问题,当然也可以用 ...

  3. [UOJ UNR#1]奇怪的线段树

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...

  4. UOJ#7. 【NOI2014】购票 | 线段树 凸包优化DP

    题目链接 UOJ #7 题解 首先这一定是DP!可以写出: \[f[i] = \min_{ancestor\ j} \{f[j] + (d[j] - d[i]) * p[i] + q[i]\}\] 其 ...

  5. UOJ #314. 【NOI2017】整数 | 线段树 压位

    题目链接 UOJ 134 题解 可爱的电音之王松松松出的题--好妙啊. 首先想一个朴素的做法! 把当前的整数的二进制当作01序列用线段树维护一下(序列的第i位就是整数中位权为\(2^k\)的那一位). ...

  6. 【uoj#228】基础数据结构练习题 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...

  7. UOJ#470. 【ZJOI2019】语言 虚树,线段树合并

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ470.html 前言 做完情报中心来看这个题突然发现两题有相似之处然后就会做了. 题解 首先,我们考虑将所有答案点对分为两 ...

  8. UOJ#299. 【CTSC2017】游戏 线段树 概率期望 矩阵

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ299.html 前言 不会概率题的菜鸡博主做了一道概率题. 写完发现运行效率榜上的人都没有用心卡常数——矩阵怎么可以用数组 ...

  9. UOJ#467. 【ZJOI2019】线段树 线段树,概率期望

    原文链接www.cnblogs.com/zhouzhendong/p/ZJOI2019Day1T2.html 前言 在LOJ交了一下我的代码,发现它比选手机快将近 4 倍. 题解 对于线段树上每一个节 ...

  10. 【BZOJ-3306】树 线段树 + DFS序

    3306: 树 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 792  Solved: 262[Submit][Status][Discuss] De ...

随机推荐

  1. 【python】使用python写windows服务

    背景 运维windows服务器的同学都知道,windows服务器进行批量管理的时候非常麻烦,没有比较顺手的工具,虽然saltstack和ansible都能够支持windows操作,但是使用起来总感觉不 ...

  2. 【shell】shuf命令,随机排序

    shuf命令主要用来对输入的每一行进行随机排序输出,我们可以利用这个属性,实现在几个文件中随机读取一个的功能 如下,zls.txt文件有三行,我们想要随机从中读取一行. 可以看到,每次读取顺序都不一样 ...

  3. flask的请求上下文源码解读

    一.flask请求上下文源码解读 通过上篇源码分析( ---Flask中的CBV和上下文管理--- ),我们知道了有请求发来的时候就执行了app(Flask的实例化对象)的__call__方法,而__ ...

  4. Quartz Job scheduling 基础实现代码

    Quartz 集成在 SpringBoot 中分为 config.task.utils.controller 和 MVC 的三层即 controller.service.dao 和 entity. c ...

  5. 深入理解JVM - 虚拟机字节码执行引 - 第八章

    概述从外观上看起来,所有的 Java 虚拟机的执行引擎都是一致的:输入的是字节码文件,处理过程是字节码解析的等效过程,输出的是执行结果.主要从概念模型的角度来讲解虚拟机的方法调用和字节码执行. 运行时 ...

  6. CI公用模型

    <?php if ( ! defined('BASEPATH')) exit('No direct script access allowed'); /** * SEO管理系统 -- 公用模型 ...

  7. IDEAL葵花宝典:java代码开发规范插件 checkstyle、visualVM、PMD 插件

    前言: visualVM: 运行java程序的时候启动visualvm,方便查看jvm的情况 比如堆内存大小的分配:某个对象占用了多大的内存,jvm调优必备工具. checkstyle: CheckS ...

  8. Oracle学习笔记_05_ 一个创建表空间、创建用户、授权的完整过程

    一.完整命令 su - oracle sqlplus /nolog conn /as sysdba create tablespace scaninvoice logging datafile '/u ...

  9. EmbarassedBird网站需求规格说明书

    网站概述 一个特别的在线问答游戏 用户环境 小屏手机, 中等屏幕平板电脑, 大屏显示器 使用chrome浏览器将有全部功能, 其他浏览器完备的基本功能 编程语言&开发环境 HTML/CSS/J ...

  10. selenium 经常用到的API

    一.webdriver 属性及方法: 1.获取当前页面的 url driver.current_url 2 .获取窗口相关信息 get_window_position() 返回窗口x,y坐标 get_ ...