裸题。输入一个无向图,输出最大密度子图(输出子图结点数和升序编号)。

看了《最小割模型在信息学竞赛中的应用——胡伯涛》的一部分,感觉01分数规划问题又是个大坑。暂时还看不懂。

参考http://blog.csdn.net/power721/article/details/6781518

构图:

把原图中的无向边转换成两条有向边,容量为1。

设一源点,连接所有点,容量为U(取m)。

设一汇点,所有点连接汇点,容量为 U+2g-dv 。

二分枚举最大密度g,其中dv为v的度。

判断(U*n-MaxFlow)/2.>=0。

最后跳出的L就是最大密度。

拿这个L再重新建图,求最大流。

然后从s出发bfs或者dfs,走残留容量大于0的边,所有能到达的点就是答案。

具体分析过程见胡伯涛的论文《最小割模型在信息学竞赛中的应用》

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <set>
#include <queue>
using namespace std; #define ll long long
#define MP make_pair #define mxn 110
#define mxe 4500
#define inf 1e9
#define eps 1e-8 vector<int>ans; struct SAP{
int dis[mxn],pre[mxn],gap[mxn],arc[mxn];
double f[mxe],cap[mxe];
int head[mxn],nxt[mxe],vv[mxe],e;
void init(){e=0;memset(head,-1,sizeof(head));}
void add(int u,int v,double c){
vv[e]=v,cap[e]=c,nxt[e]=head[u],head[u]=e++;
vv[e]=u,cap[e]=0,nxt[e]=head[v],head[v]=e++;
}
void bfs(int s){
int q[mxn];
int ht=0,tl=0;
q[tl++]=s;
ans.clear();
bool vis[mxn];
memset(vis,false,sizeof(vis));
vis[s]=true;
while(ht<tl){
int u = q[ht++];
for(int i=head[u];i!=-1;i=nxt[i]){
int v = vv[i];
if(!vis[v] && cap[i]-f[i]){
vis[v]=true;
q[tl++]=v;
if(v<s) ans.push_back(v);
}
}
}
}
double max_flow(int s,int t,int n){
int q[mxn],j,mindis;
double ans=0;
int ht=0,tl=1,u,v;
double low;
bool found,vis[mxn];
memset(dis,0,sizeof(dis));
memset(gap,0,sizeof(gap));
memset(vis,0,sizeof(vis));
memset(arc,-1,sizeof(arc));
memset(f,0,sizeof(f));
q[0]=t;vis[t]=true;dis[t]=0;gap[0]=1;
while(ht<tl){
u=q[ht++];
for(int i=head[u];i!=-1;i=nxt[i]){
v = vv[i];
if(!vis[v]){
vis[v]=true;
dis[v]=dis[u]+1;
q[tl++]=v;
gap[dis[v]]++;
arc[v]=head[v];
}
}
}
u=s;low=inf;pre[s]=s;
while(dis[s]<n){
found=false;
for(int &i=arc[u];i!=-1;i=nxt[i]){
if(dis[vv[i]]==dis[u]-1 && cap[i]>f[i]){
found=true;v=vv[i];
low=min(low,cap[i]-f[i]);
pre[v]=u;u=v;
if(u==t){
while(u!=s){
u=pre[u];
f[arc[u]]+=low;
f[arc[u]^1]-=low;
}
ans+=low;low=inf;
}
break;
}
}
if(found) continue;
mindis=n;
for(int i=head[u];i!=-1;i=nxt[i]){
if(mindis>dis[vv[i]] && cap[i]>f[i]){
mindis=dis[vv[j=i]];
arc[u]=i;
}
}
if(--gap[dis[u]]==0) return ans;
dis[u]=mindis+1;
gap[dis[u]]++;
u=pre[u];
}
return ans;
}
}sap;
int e[1010][2];
int deg[110];
int n,m;
bool jud(double g){
sap.init();
for(int i=0;i<m;++i){
sap.add(e[i][0],e[i][1],1);
sap.add(e[i][1],e[i][0],1);
}
for(int i=1;i<=n;++i) sap.add(n+1,i,m);
for(int i=1;i<=n;++i) sap.add(i,n+2,m+2*g-deg[i]);
double mf = sap.max_flow(n+1,n+2,n+2);
return (n*m-mf)/2>eps;
}
int main(){
while(~scanf("%d%d",&n,&m)){
if(m==0){
puts("1");
puts("1");
continue;
}
memset(deg,0,sizeof(deg));
for(int i=0;i<m;++i){
scanf("%d%d",&e[i][0],&e[i][1]);
deg[e[i][0]]++;
deg[e[i][1]]++;
}
double l=0,r=m;
while(r-l>eps){
double mid = (l+r)/2;
if(jud(mid)) l=mid;
else r=mid;
}
//printf("%lf\n",l);
jud(l);
sap.bfs(n+1);
sort(ans.begin(),ans.end());
printf("%d\n",ans.size());
for(int i=0;i<ans.size();++i) printf("%d\n",ans[i]);
}
return 0;
}

POJ 3155 Hard Life(最大密度子图)的更多相关文章

  1. POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分

    http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...

  2. POJ 3155 Hard Life(最大密度子图+改进算法)

    Hard Life Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 9012   Accepted: 2614 Case Ti ...

  3. poj 3155 最大密度子图

    思路: 这个还是看的胡伯涛的论文<最小割在信息学竞赛中的应用>.是将最大密度子图问题转化为了01分数规划和最小割问题. 直接上代码: #include <iostream> # ...

  4. POJ 3155:Hard Life(最大密度子图)

    题目链接 题意 给出n个人,和m对有冲突的人.要裁掉一些人,使得冲突率最高,冲突率为存在的冲突数/人数. 思路 题意可以转化为,求出一些边,使得|E|/|V|最大,这种分数规划叫做最大密度子图. 学习 ...

  5. POJ 3155 Hard Life

    Hard Life Time Limit: 8000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID:  ...

  6. POJ3155 Hard Life [最大密度子图]

      题意:最大密度子图 #include<iostream> #include<cstdio> #include<cstring> #include<algo ...

  7. poj3155 最大密度子图

    求最大密度子图 记得在最后一次寻找的时候记得将进入的边放大那么一点点,这样有利于当每条边都满流的情况下会选择点 #include <iostream> #include <algor ...

  8. bzoj 1312 最大密度子图

    晕,m=0是要输出1(弄的我还找管理员要数据,但明显题意是叫我们输出0呀) 最大密度子图,把边转换成点,然后二分答案,跑最大权闭合子图判定是否可行. #include <cstdio> # ...

  9. 2017 计蒜之道 初赛 第三场 D. 腾讯狼人杀 (点边都带权的最大密度子图)

    点边都带权的最大密度子图,且会有必须选的点. 求\(\frac{\sum w_e}{k*(2n-k)}\)的最大值,其中k为子图点数 设\[h(g) = \sum w_e - g*(2nk-k^2)\ ...

随机推荐

  1. 如何重新划分linux分区大小

    1.下载脚本文件,将脚本文件内容复制 chmod +x resize.sh sudo ./resize.sh 输入上面命令后会看到下面的结果 root@odroid:~# sudo ./resize. ...

  2. 2016-1-1最新版本的linphone-android在mac上编译通过,同时建立了IDEA工程

    虽然参考了这个文章<MAC OS编译Android版Linphone SDK和APP>,https://www.lidaren.com/archives/1592 ,但是在实际的编译过程中 ...

  3. js实现点击修改按钮之后单元格变成可编辑状态

    主要实现原理: 每一行有一个修改按钮 点击修改之后,获取行对象,通过行对象再获取行中单元格数组.然后把每一个单元格中的innerHTML替换成input输入框,并赋值value=原来单元格中的内容,鼠 ...

  4. Windows Iot:让Raspberry Pi跑起来(1)

    首先请大家原谅我的"不务正业",放着RabbitHub不写,各种系列的文章不写搞什么Iot,哈哈,最近心血来潮想搞个速度极快的遥控车玩,望着在角落的Raspberry Pi恶狠狠的 ...

  5. 如何重复使用IEnumerable对象来枚举?

    我在2011年9月发表了一个问问,http://q.cnblogs.com/q/28679/. 没人理我. 自己看了一下,尝试自己解决: 原问题: MSDN: 在非泛型集合中,您可以在调用 Reset ...

  6. md5和SHA校验码

    md5已经不安全了,中国山东大学女学霸王小云破解了一系列密码,当真是巾帼不让须眉.说是破解,其实就是给你一个md5码,让你求出这个md5码所对应的原始信息,显然一个md5对应无数种原始信息.而md5的 ...

  7. Android BLE 蓝牙编程(四)

    接上篇,我们已经实现了短震,长震的功能了- 现在我们需要实现点击后一直震动的功能 开始我的想法是再循环中不断执行write方法,然而这个办法行不通. 系统会报错. 那要如何实现这个想法呢?其实很简单, ...

  8. Java构造和解析Json数据

    BaseResult wyComany = propertyService.getWyCompanyById(CommunityInfos.getWyCompany());//这里返回的是json字符 ...

  9. Neural Style学习2——环境安装

    neural-style Installation This guide will walk you through the setup for neural-style on Ubuntu. Ste ...

  10. firefox屏蔽广告真是太好了

    在ubuntu上使用firefox有些页面的广告很多,很讨厌. 突然想到是否可以把这些广告屏蔽掉.在网上搜索了一下,发现有个 adblock plus插件,安装上发现广告没有了,很干净. 开源软件就是 ...