Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表。其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径。

Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计。在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先队列实现,其时间复杂度为 O(V2),基于 Fibonacci heap 的最小优先队列实现版本,其时间复杂度为 O(E + VlogV)。

Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法。对于带权有向图 G = (V, E),Dijkstra 算法要求图 G 中边的权值均为非负,而 Bellman-Ford 算法能适应一般的情况(即存在负权边的情况)。一个实现的很好的 Dijkstra 算法比 Bellman-Ford 算法的运行时间 O(V*E) 要低。

Dijkstra 算法描述:

  1. 创建源顶点 v 到图中所有顶点的距离的集合 distSet,为图中的所有顶点指定一个距离值,初始均为 Infinite,源顶点距离为 0;
  2. 创建 SPT(Shortest Path Tree)集合 sptSet,用于存放包含在 SPT 中的顶点;
  3. 如果 sptSet 中并没有包含所有的顶点,则:
    • 选中不包含在 sptSet 中的顶点 u,u 为当前 sptSet 中未确认的最短距离顶点;
    • 将 u 包含进 sptSet;
    • 更新 u 的所有邻接顶点的距离值;

伪码实现如下:

 function Dijkstra(Graph, source):

     dist[source] ←           // Distance from source to source
prev[source] ← undefined // Previous node in optimal path initialization for each vertex v in Graph: // Initialization
if v ≠ source // Where v has not yet been removed from Q (unvisited nodes)
dist[v] ← infinity // Unknown distance function from source to v
prev[v] ← undefined // Previous node in optimal path from source
end if
add v to Q // All nodes initially in Q (unvisited nodes)
end for while Q is not empty:
u ← vertex in Q with min dist[u] // Source node in first case
remove u from Q for each neighbor v of u: // where v has not yet been removed from Q.
alt ← dist[u] + length(u, v)
if alt < dist[v]: // A shorter path to v has been found
dist[v] ← alt
prev[v] ← u
end if
end for
end while return dist[], prev[] end function

例如,下面是一个包含 9 个顶点的图,每条边分别标识了距离。

源顶点 source = 0,初始时,

  • sptSet = {false, false, false, false, false, false, false, false, false};
  • distSet = {0, INF, INF, INF, INF, INF, INF, INF, INF};

将 0 包含至 sptSet 中;

  • sptSet = {true, false, false, false, false, false, false, false, false};

更新 0 至其邻接节点的距离;

  • distSet = {0, 4, INF, INF, INF, INF, INF, 8, INF};

选择不在 sptSet 中的 Min Distance 的顶点,为顶点 1,则将 1 包含至 sptSet;

  • sptSet = {true, true, false, false, false, false, false, false, false};

更新 1 至其邻接节点的距离;

  • distSet = {0, 4, 12, INF, INF, INF, INF, 8, INF};

选择不在 sptSet 中的 Min Distance 的顶点,为顶点 7,则将 7 包含至 sptSet;

  • sptSet = {true, true, false, false, false, false, false, true, false};

更新 7 至其邻接节点的距离;

  • distSet = {0, 4, 12, INF, INF, INF, 9, 8, 15};

选择不在 sptSet 中的 Min Distance 的顶点,为顶点 6,则将 6 包含至 sptSet;

  • sptSet = {truetrue, false, false, false, false, truetrue, false};

更新 6 至其邻接节点的距离;

  • distSet = {0412, INF, INF, 119815};

以此类推,直到遍历结束。

  • sptSet = {truetrue, true, true, true, truetruetrue, true};
  • distSet = {0412, 19, 21119814};

最终结果为源顶点 0 至所有顶点的距离:

Vertex   Distance from Source
0 0
1 4
2 12
3 19
4 21
5 11
6 9
7 8
8 14

C#代码实现:

 using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
int[,] graph = new int[, ]
{
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , }
}; Graph g = new Graph(graph.GetLength());
for (int i = ; i < graph.GetLength(); i++)
{
for (int j = ; j < graph.GetLength(); j++)
{
if (graph[i, j] > )
g.AddEdge(i, j, graph[i, j]);
}
} int[] dist = g.Dijkstra();
Console.WriteLine("Vertex\t\tDistance from Source");
for (int i = ; i < dist.Length; i++)
{
Console.WriteLine("{0}\t\t{1}", i, dist[i]);
} Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int distance)
{
this.Begin = begin;
this.End = end;
this.Distance = distance;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Distance { get; private set; }
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public void AddEdge(int begin, int end, int distance)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, distance));
} public int[] Dijkstra(int source)
{
// dist[i] will hold the shortest distance from source to i
int[] distSet = new int[VertexCount]; // sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from source to i is finalized
bool[] sptSet = new bool[VertexCount]; // initialize all distances as INFINITE and stpSet[] as false
for (int i = ; i < VertexCount; i++)
{
distSet[i] = int.MaxValue;
sptSet[i] = false;
} // distance of source vertex from itself is always 0
distSet[source] = ; // find shortest path for all vertices
for (int i = ; i < VertexCount - ; i++)
{
// pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to source in first iteration.
int u = CalculateMinDistance(distSet, sptSet); // mark the picked vertex as processed
sptSet[u] = true; // update dist value of the adjacent vertices of the picked vertex.
for (int v = ; v < VertexCount; v++)
{
// update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from source to v through u is
// smaller than current value of dist[v]
if (!sptSet[v]
&& distSet[u] != int.MaxValue
&& _adjacentEdges[u].Exists(e => e.End == v))
{
int d = _adjacentEdges[u].Single(e => e.End == v).Distance;
if (distSet[u] + d < distSet[v])
{
distSet[v] = distSet[u] + d;
}
}
}
} return distSet;
} /// <summary>
/// A utility function to find the vertex with minimum distance value,
/// from the set of vertices not yet included in shortest path tree
/// </summary>
private int CalculateMinDistance(int[] distSet, bool[] sptSet)
{
int minDistance = int.MaxValue;
int minDistanceIndex = -; for (int v = ; v < VertexCount; v++)
{
if (!sptSet[v] && distSet[v] <= minDistance)
{
minDistance = distSet[v];
minDistanceIndex = v;
}
} return minDistanceIndex;
}
}
}
}

参考资料

本篇文章《Dijkstra 单源最短路径算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。

Dijkstra 单源最短路径算法的更多相关文章

  1. 【模板 && 拓扑】 Dijkstra 单源最短路径算法

    话不多说上代码 链式前向星233 #include<bits/stdc++.h> using namespace std; ,_max=0x3fffffff; //链式前向星 struct ...

  2. Bellman-Ford 单源最短路径算法

    Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...

  3. Dijkstra——单源最短路径

    算法思想 ①从一个源点开始,找距离它最近的点顶点v ②然后以顶点v为起点,去找v能到达的顶点w,即v的邻居 比较源点直接到 v的距离和(源点到v的距离+v到w的距离) 若大于后者则更新源点的到w的开销 ...

  4. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  5. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

  6. 经典贪心算法(哈夫曼算法,Dijstra单源最短路径算法,最小费用最大流)

    哈夫曼编码与哈夫曼算法 哈弗曼编码的目的是,如何用更短的bit来编码数据. 通过变长编码压缩编码长度.我们知道普通的编码都是定长的,比如常用的ASCII编码,每个字符都是8个bit.但在很多情况下,数 ...

  7. 单源最短路径算法---Dijkstra

    Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路 ...

  8. Dijkstra算法详细(单源最短路径算法)

    介绍 对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或 ...

  9. Dijkstra单源最短路径,POJ(2387)

    题目链接:http://poj.org/problem?id=2387 Dijkstra算法: //求某一点(源点)到另一点的最短路,算法其实也和源点到所有点的时间复杂度一样,O(n^2); 图G(V ...

随机推荐

  1. 通过AngularJS实现前端与后台的数据对接(二)——服务(service,$http)篇

    什么是服务? 服务提供了一种能在应用的整个生命周期内保持数据的方法,它能够在控制器之间进行通信,并且能保证数据的一致性. 服务是一个单例对象,在每个应用中只会被实例化一次(被$injector实例化) ...

  2. 百度MIP移动页面加速——不只是CDN

    MIP是用CDN做加速的么?准确答案是:是,但不只是. MIP全称Mobile Instant Pages,移动网页加速器,是百度提出的页面加速解决方案.MIP从前端渲染和页面网络传输两方面进行优化, ...

  3. 深入理解DIP、IoC、DI以及IoC容器

    摘要 面向对象设计(OOD)有助于我们开发出高性能.易扩展以及易复用的程序.其中,OOD有一个重要的思想那就是依赖倒置原则(DIP),并由此引申出IoC.DI以及Ioc容器等概念.通过本文我们将一起学 ...

  4. ES6模块import细节

    写在前面,目前浏览器对ES6的import支持还不是很好,需要用bable转译. ES6引入外部模块分两种情况: 1.导入外部的变量或函数等: import {firstName, lastName, ...

  5. .NET Core 2016 回顾

    都在回顾自己的2016,今天我们来看看.NET Core的2016. 每一年的脚步的确是快,转眼间马上就2017.新的一年,带着理想和抱负继续出发. 1 月 ASP.NET 5 改名 ASP.NET ...

  6. 【夯实PHP基础】PHP数组,字符串,对象等基础面面观

    本文地址 分享提纲 1.数组篇 2.字符创篇 3.函数篇 4.面向对象篇 5.其他篇 /*************************** 一.数组篇 Begin***************** ...

  7. BPM配置故事之案例12-触发另外流程

    还记得阿海么,对就是之前的那个采购员,他又有了些意见. 阿海:小明,你看现在的流程让大家都这么方便,能不能帮个忙让我也轻松点啊-- 小明:--你有什么麻烦,现在不是已经各个部门自己提交申请了嘛? 阿海 ...

  8. MySQL,MariaDB:Undo | Redo [转]

    本文是介绍MySQL数据库InnoDB存储引擎重做日志漫游 00 – Undo LogUndo Log 是为了实现事务的原子性,在MySQL数据库InnoDB存储引擎中,还用Undo Log来实现多版 ...

  9. 树莓派3B的食用方法-1(装系统 网线ssh连接)

    首先要有一个树莓派3B , 在某宝买就行, 这东西基本上找到假货都难,另外国产和英国也没什么差别,差不多哪个便宜买哪个就行. 不要买店家的套餐,一个是配的东西有些不需要,有的质量也不好. 提示:除了G ...

  10. 排序算法----基数排序(RadixSort(L))单链表智能版本

    转载http://blog.csdn.net/Shayabean_/article/details/44885917博客 先说说基数排序的思想: 基数排序是非比较型的排序算法,其原理是将整数按位数切割 ...