Dijkstra 单源最短路径算法
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表。其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径。

Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计。在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先队列实现,其时间复杂度为 O(V2),基于 Fibonacci heap 的最小优先队列实现版本,其时间复杂度为 O(E + VlogV)。

Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法。对于带权有向图 G = (V, E),Dijkstra 算法要求图 G 中边的权值均为非负,而 Bellman-Ford 算法能适应一般的情况(即存在负权边的情况)。一个实现的很好的 Dijkstra 算法比 Bellman-Ford 算法的运行时间 O(V*E) 要低。
Dijkstra 算法描述:
- 创建源顶点 v 到图中所有顶点的距离的集合 distSet,为图中的所有顶点指定一个距离值,初始均为 Infinite,源顶点距离为 0;
- 创建 SPT(Shortest Path Tree)集合 sptSet,用于存放包含在 SPT 中的顶点;
- 如果 sptSet 中并没有包含所有的顶点,则:
- 选中不包含在 sptSet 中的顶点 u,u 为当前 sptSet 中未确认的最短距离顶点;
- 将 u 包含进 sptSet;
- 更新 u 的所有邻接顶点的距离值;
伪码实现如下:
function Dijkstra(Graph, source):
dist[source] ← // Distance from source to source
prev[source] ← undefined // Previous node in optimal path initialization
for each vertex v in Graph: // Initialization
if v ≠ source // Where v has not yet been removed from Q (unvisited nodes)
dist[v] ← infinity // Unknown distance function from source to v
prev[v] ← undefined // Previous node in optimal path from source
end if
add v to Q // All nodes initially in Q (unvisited nodes)
end for
while Q is not empty:
u ← vertex in Q with min dist[u] // Source node in first case
remove u from Q
for each neighbor v of u: // where v has not yet been removed from Q.
alt ← dist[u] + length(u, v)
if alt < dist[v]: // A shorter path to v has been found
dist[v] ← alt
prev[v] ← u
end if
end for
end while
return dist[], prev[]
end function
例如,下面是一个包含 9 个顶点的图,每条边分别标识了距离。

源顶点 source = 0,初始时,
- sptSet = {false, false, false, false, false, false, false, false, false};
- distSet = {0, INF, INF, INF, INF, INF, INF, INF, INF};
将 0 包含至 sptSet 中;
- sptSet = {true, false, false, false, false, false, false, false, false};
更新 0 至其邻接节点的距离;
- distSet = {0, 4, INF, INF, INF, INF, INF, 8, INF};

选择不在 sptSet 中的 Min Distance 的顶点,为顶点 1,则将 1 包含至 sptSet;
- sptSet = {true, true, false, false, false, false, false, false, false};
更新 1 至其邻接节点的距离;
- distSet = {0, 4, 12, INF, INF, INF, INF, 8, INF};

选择不在 sptSet 中的 Min Distance 的顶点,为顶点 7,则将 7 包含至 sptSet;
- sptSet = {true, true, false, false, false, false, false, true, false};
更新 7 至其邻接节点的距离;
- distSet = {0, 4, 12, INF, INF, INF, 9, 8, 15};

选择不在 sptSet 中的 Min Distance 的顶点,为顶点 6,则将 6 包含至 sptSet;
- sptSet = {true, true, false, false, false, false, true, true, false};
更新 6 至其邻接节点的距离;
- distSet = {0, 4, 12, INF, INF, 11, 9, 8, 15};

以此类推,直到遍历结束。
- sptSet = {true, true, true, true, true, true, true, true, true};
- distSet = {0, 4, 12, 19, 21, 11, 9, 8, 14};

最终结果为源顶点 0 至所有顶点的距离:
Vertex Distance from Source
0 0
1 4
2 12
3 19
4 21
5 11
6 9
7 8
8 14
C#代码实现:
using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
int[,] graph = new int[, ]
{
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , }
}; Graph g = new Graph(graph.GetLength());
for (int i = ; i < graph.GetLength(); i++)
{
for (int j = ; j < graph.GetLength(); j++)
{
if (graph[i, j] > )
g.AddEdge(i, j, graph[i, j]);
}
} int[] dist = g.Dijkstra();
Console.WriteLine("Vertex\t\tDistance from Source");
for (int i = ; i < dist.Length; i++)
{
Console.WriteLine("{0}\t\t{1}", i, dist[i]);
} Console.ReadKey();
} class Edge
{
public Edge(int begin, int end, int distance)
{
this.Begin = begin;
this.End = end;
this.Distance = distance;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Distance { get; private set; }
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public void AddEdge(int begin, int end, int distance)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, distance));
} public int[] Dijkstra(int source)
{
// dist[i] will hold the shortest distance from source to i
int[] distSet = new int[VertexCount]; // sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from source to i is finalized
bool[] sptSet = new bool[VertexCount]; // initialize all distances as INFINITE and stpSet[] as false
for (int i = ; i < VertexCount; i++)
{
distSet[i] = int.MaxValue;
sptSet[i] = false;
} // distance of source vertex from itself is always 0
distSet[source] = ; // find shortest path for all vertices
for (int i = ; i < VertexCount - ; i++)
{
// pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to source in first iteration.
int u = CalculateMinDistance(distSet, sptSet); // mark the picked vertex as processed
sptSet[u] = true; // update dist value of the adjacent vertices of the picked vertex.
for (int v = ; v < VertexCount; v++)
{
// update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from source to v through u is
// smaller than current value of dist[v]
if (!sptSet[v]
&& distSet[u] != int.MaxValue
&& _adjacentEdges[u].Exists(e => e.End == v))
{
int d = _adjacentEdges[u].Single(e => e.End == v).Distance;
if (distSet[u] + d < distSet[v])
{
distSet[v] = distSet[u] + d;
}
}
}
} return distSet;
} /// <summary>
/// A utility function to find the vertex with minimum distance value,
/// from the set of vertices not yet included in shortest path tree
/// </summary>
private int CalculateMinDistance(int[] distSet, bool[] sptSet)
{
int minDistance = int.MaxValue;
int minDistanceIndex = -; for (int v = ; v < VertexCount; v++)
{
if (!sptSet[v] && distSet[v] <= minDistance)
{
minDistance = distSet[v];
minDistanceIndex = v;
}
} return minDistanceIndex;
}
}
}
}
参考资料
- 广度优先搜索
- Dijkstra's algorithm
- Greedy Algorithms | Set 7 (Dijkstra’s shortest path algorithm)
- Bellman-Ford 单源最短路径算法
- Introduction to Algorithms 6.006 - Lecture 16
本篇文章《Dijkstra 单源最短路径算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。
Dijkstra 单源最短路径算法的更多相关文章
- 【模板 && 拓扑】 Dijkstra 单源最短路径算法
话不多说上代码 链式前向星233 #include<bits/stdc++.h> using namespace std; ,_max=0x3fffffff; //链式前向星 struct ...
- Bellman-Ford 单源最短路径算法
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...
- Dijkstra——单源最短路径
算法思想 ①从一个源点开始,找距离它最近的点顶点v ②然后以顶点v为起点,去找v能到达的顶点w,即v的邻居 比较源点直接到 v的距离和(源点到v的距离+v到w的距离) 若大于后者则更新源点的到w的开销 ...
- 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)
一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...
- 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)
一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...
- 经典贪心算法(哈夫曼算法,Dijstra单源最短路径算法,最小费用最大流)
哈夫曼编码与哈夫曼算法 哈弗曼编码的目的是,如何用更短的bit来编码数据. 通过变长编码压缩编码长度.我们知道普通的编码都是定长的,比如常用的ASCII编码,每个字符都是8个bit.但在很多情况下,数 ...
- 单源最短路径算法---Dijkstra
Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路 ...
- Dijkstra算法详细(单源最短路径算法)
介绍 对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或 ...
- Dijkstra单源最短路径,POJ(2387)
题目链接:http://poj.org/problem?id=2387 Dijkstra算法: //求某一点(源点)到另一点的最短路,算法其实也和源点到所有点的时间复杂度一样,O(n^2); 图G(V ...
随机推荐
- 【调侃】IOC前世今生
前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...
- Asp.Net MVC中使用StreamReader读取“Post body”之应用场景。
场景:有三个市场(Global.China.USA),对前台传过来的数据有些验证需要细化到每个市场去完成. 所以就出现了基类(Global)和派生类(China.USA) 定义基类(Global)Pe ...
- PHP验证用户登录例子-学习笔记
1.基本流程: 2.UML类图: 3.PHP代码: 3.1 index.php <?php /** * Created by PhpStorm. * User: andy * Date: 16- ...
- 一起学微软Power BI系列-使用技巧(1)连接Oracle与Mysql数据库
说起Oracle数据库,以前没用过Oracle不知道,但是这1年用Oracle后,发现真的是想狂吐槽,特别是那个.NET驱动和链接字符串,特别奇葩.总归是和其他数据库不一样,标新立异,不知道为何.另外 ...
- Mac上MySQL忘记root密码且没有权限的处理办法&workbench的一些tips (转)
忘记Root密码肿么办 Mac上安装MySQL就不多说了,去mysql的官网上下载最新的mysql包以及workbench,先安装哪个影响都不大.如果你是第一次安装,在mysql安装完成之后,会弹出来 ...
- PHP获取客户端IP
/** * 获取客户端IP */ function getClientIp() { $ip = 'unknown'; $unknown = 'unknown'; if (isset($_SERVER[ ...
- JDBC MySQL 多表关联查询查询
public static void main(String[] args) throws Exception{ Class.forName("com.mysql.jdbc.Driver&q ...
- 我理解的MVC
前言 前一阶段对MVC模式及其衍生模式做了一番比较深入的研究和实践,这篇文章也算是一个阶段性的回顾和总结. 经典MVC模式 经典MVC模式中,M是指业务模型,V是指用户界面,C则是控制器,使用MVC的 ...
- Java企业实训 - 01 - Java前奏
前言: 虽然个人专攻.NET方向,不过由于个人是干教育行业的,方方面面的东西,不能说都必须精通,但肯定多少都会涉及到. 一个菜鸟学员,从啥都不会,经过一步步学习,最后到企业上手掌管一个模块甚至一个项目 ...
- PowerShell 数组以及XML操作
PowerShell基础 PowerShell数组操作 将字符串拆分成数据的操作 cls #原始字符串 $str = "abc,def,ghi,mon" #数据定义 #$StrAr ...