POJ 3304 Segments --枚举,几何
题意: 给n条线段,问有没有一条直线,是每条线段到这条直线上的投影有一个公共点。
解法: 有公共点说明有一条这条直线的垂线过所有线段,要找一条直线过所有线段,等价于从所有线段中任选两端点形成的直线存在可以穿过所有的线段的直线(可将A平移至一条线段端点,然后绕这点旋转,使A过另一条线段端点),然后O(n^2)的枚举找任意两个线段的两个端点,还要找自己这条线段的两个端点,形成一条直线
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define eps 1e-8
using namespace std;
#define N 100017 struct Point{
double x,y;
Point(double x=, double y=):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
struct Line{
Point p;
Vector v;
double ang;
Line(){}
Line(Point p, Vector v):p(p),v(v) { ang = atan2(v.y,v.x); }
Point point(double t) { return Point(p.x + t*v.x, p.y + t*v.y); }
bool operator < (const Line &L)const { return ang < L.ang; }
};
int dcmp(double x) {
if(x < -eps) return -;
if(x > eps) return ;
return ;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); } bool OnSegment(Point P, Point A, Point B) {
return dcmp(Cross(A-P,B-P)) == && dcmp(Dot(A-P,B-P)) < ;
}
double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
if(dcmp(Dot(v1, v3)) > ) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B-A, v2 = P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
Point GetLineIntersection(Line A, Line B){
Vector u = A.p - B.p;
double t = Cross(B.v, u) / Cross(A.v, B.v);
return A.p + A.v*t;
} //data segment
struct Seg{
Point P[];
}seg[];
//data ends int main()
{
int t,n,i,j,k,h,s;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=;i<=n;i++)
seg[i].P[].input(), seg[i].P[].input();
if(n == )
{
puts("Yes!");
continue;
}
bool flag = ;
Point A,B;
for(i=;i<=n;i++)
{
for(j=i+;j<=n;j++)
{
for(k=;k<;k++) //Seg[i]'s Point
{
for(h=;h<;h++) //Seg[j]'s Point
{
A = seg[i].P[k], B = seg[j].P[h];
if(A == B) continue;
for(s=;s<=n;s++)
{
if(s == i || s == j) continue;
if(dcmp(Cross(seg[s].P[]-A,B-A)*Cross(seg[s].P[]-A,B-A)) > )
break;
}
if(s == n+)
{
flag = ;
break;
}
}
}
int cnt = ;
for(k=i;cnt<=;k=j,cnt++)
{
A = seg[k].P[], B = seg[k].P[];
if(A == B) continue;
for(s=;s<=n;s++)
{
if(s == k) continue;
if(dcmp(Cross(seg[s].P[]-A,B-A)*Cross(seg[s].P[]-A,B-A)) > )
break;
}
if(s == n+)
{
flag = ;
break;
}
}
}
if(flag) break;
}
if(flag) puts("Yes!");
else puts("No!");
}
return ;
}
POJ 3304 Segments --枚举,几何的更多相关文章
- POJ 3304 Segments 判断直线和线段相交
POJ 3304 Segments 题意:给定n(n<=100)条线段,问你是否存在这样的一条直线,使得所有线段投影下去后,至少都有一个交点. 思路:对于投影在所求直线上面的相交阴影,我们可以 ...
- POJ 3304 Segments(判断直线与线段是否相交)
题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...
- POJ 3304 Segments(计算几何:直线与线段相交)
POJ 3304 Segments 大意:给你一些线段,找出一条直线可以穿过全部的线段,相交包含端点. 思路:遍历全部的端点,取两个点形成直线,推断直线是否与全部线段相交,假设存在这种直线,输出Yes ...
- POJ 3304 Segments (判断直线与线段相交)
题目链接:POJ 3304 Problem Description Given n segments in the two dimensional space, write a program, wh ...
- POJ 3304 Segments 基础线段交判断
LINK 题意:询问是否存在直线,使得所有线段在其上的投影拥有公共点 思路:如果投影拥有公共区域,那么从投影的公共区域作垂线,显然能够与所有线段相交,那么题目转换为询问是否存在直线与所有线段相交.判断 ...
- 简单几何(线段与直线的位置) POJ 3304 Segments
题目传送门 题意:有若干线段,问是否存在一条直线,所有线段投影到直线上时至少有一个公共点 分析:有一个很好的解题报告:二维平面上线段与直线位置关系的判定.首先原问题可以转换为是否存在一条直线与所有线段 ...
- poj 3304 Segments (题意理解出错,错误的只枚举了过线段的直线)
//枚举过每一条线段的直线, //再判断其他线段的点在直线上或被直线穿过 //即求直线与线段相交(叉积) #include<stdio.h> #include<math.h> ...
- POJ 3304 Segments (直线和线段相交判断)
Segments Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7739 Accepted: 2316 Descript ...
- poj 3304 Segments
Segments 题意:给你100以内的n条线段,问你是否存在一条直线,使得题给的线段在这条直线上的“投影” 相交于一点: 思路: 1.先要将线段投影相交于一点转变为存在一条直线与所有的线段相交: 很 ...
随机推荐
- 如何使用mybatis《一》
mybatis作为ORM轻量级框架一出现就吸引了无数人的眼球,比hibernate要简单且入门较容易,下面开始我的第一个mybatis程序. 一.下载mybatis的包 我们知道任何一个框架都会有其包 ...
- PowerShell与CMD在路径解析上的一点不同
对于路径含有空格的文件夹,在加入PATH环境变量时,前后往往会加上引号.这种情况,CMD可以正确识别:但是Powershell却不能加上引号,否则无法定位路径. 例如,在PS中,$env:path查看 ...
- iOS 七牛云上传并获取图片----【客户端】
最近做了七牛云存储的有关内容,涉及到与后台交互获取验证的token,无奈,后台自命清高,不与理会,没办法呀,于是自己搞呗.首先呢在在七牛上注册一个账号,然后呢添加一个存储空间这时候空间名 ...
- Sublime Text3 快捷键汇总
Ctrl+D 选词 (反复按快捷键,即可继续向下同时选中下一个相同的文本进行同时编辑)Ctrl+G 跳转到相应的行Ctrl+J 合并行(已选择需要合并的多行时)Ctrl+L 选择整行(按住-继续选择下 ...
- jquery动态创建节点
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 2015年第7本(英文第6本):纳尼亚传奇I–狮子、女巫、魔衣橱
书名: The Chronicles of Narnia 1 — The Lion, the Witch and the Wardrobe 作者:C.S. Lewis 单词数:4.2万 不重复单词数: ...
- tableview直接滚动至最后一行的问题
tableview直接滚动至最后一行 类似聊天界面,tableview应该直接显示在最后一行,并且不应该有滚动的出现. 在网上查了很久,直接滚动至最后一行很容易实现,有两种方法比较好. 1. 调用sc ...
- CocoaPods 添加第三方库报错
1.终端报错:The dependency MBProgressHUD (~> 0.9.2) is not used in any concrete target.2.原因:CocoaPods升 ...
- Spring(八)SSH整合简述
一.Spring与Struts2的整合 1.1.整合步骤 1.2.配置web.xml 1.3.配置spring配置文件applicationContext.xml 1.4.配置struts配置文件 1 ...
- ReactiveCocoa之UI篇
前言: 上一篇讲ReactiveCocoa是函数响应式编程,并将多种事件响应的方式统一起来,使得不同的事件响应方式高度统一.同时也讲了ReactiveCocoa框架里面常见的几个概念.接下来基于那几个 ...