uva 1471 defence lines——yhx
After the last war devastated your country, you - as the king of the land of Ardenia - decided it was
high time to improve the defense of your capital city. A part of your fortication is a line of mage
towers, starting near the city and continuing to the northern woods. Your advisors determined that the
quality of the defense depended only on one factor: the length of a longest contiguous tower sequence
of increasing heights. (They gave you a lengthy explanation, but the only thing you understood was
that it had something to do with ring energy bolts at enemy forces).
After some hard negotiations, it appeared that building new towers is out of question. Mages of
Ardenia have agreed to demolish some of their towers, though. You may demolish arbitrary number of
towers, but the mages enforced one condition: these towers have to be consecutive.
For example, if the heights of towers were, respectively, 5, 3, 4, 9, 2, 8, 6, 7, 1, then by demolishing
towers of heights 9, 2, and 8, the longest increasing sequence of consecutive towers is 3, 4, 6, 7.
Input
The input contains several test cases. The rst line of the input contains a positive integer Z 25,
denoting the number of test cases. Then Z test cases follow, each conforming to the format described
below.
The input instance consists of two lines. The rst one contains one positive integer n 2 105
denoting the number of towers. The second line contains n positive integers not larger than 109
separated by single spaces being the heights of the towers.
Output
For each test case, your program has to write an output conforming to the format described below.
You should output one line containing the length of a longest increasing sequence of consecutive
towers, achievable by demolishing some consecutive towers or no tower at all.
#include<cstdio>
#include<set>
#include<cstring>
#define M(a) memset(a,0,sizeof(a))
using namespace std;
struct ele
{
int a,g;
bool operator < (const ele & x) const
{
return a<x.a;
}
}e1,e2;
set<ele> s;
set<ele>::iterator it;
int a[],f[],g[];
int main()
{
int i,j,k,m,n,p,q,x,y,z,t,ans;
bool b;
scanf("%d",&t);
while (t--)
{
M(a);
M(f);
M(g);
s.clear();
scanf("%d",&n);
for (i=;i<=n;i++)
scanf("%d",&a[i]);
for (i=n;i>=;i--)
if (a[i]<a[i+]) f[i]=f[i+]+;
else f[i]=;
for (i=;i<=n;i++)
if (a[i]>a[i-]) g[i]=g[i-]+;
else g[i]=;
e1.a=a[];
e1.g=g[];
s.insert(e1);
ans=;
for (i=;i<=n;i++)
{
e1.a=a[i];
e1.g=g[i];
it=s.lower_bound(e1);
b=;
if (it!=s.begin())
{
e2=*(--it);
if (f[i]+e2.g>ans) ans=f[i]+e2.g;
if (e1.g<=e2.g) b=;
}
if (b)
{
s.erase(e1);
s.insert(e1);
it=s.find(e1);
it++;
while (it!=s.end()&&(*it).a>e1.a&&(*it).g<=e1.g) s.erase(it++);
}
}
printf("%d\n",ans);
}
}
因为不太会写stl,所以照着标程边抄边改边理解。
对于每个元素求出以它开头和结尾的最长递增子序列长度f[i]和g[i],那么对于每一个确定的后端点i,只需要找到满足a[j]<a[i]的最大g[j]即可。
易知如果a[j']>a[j]且g[j']<=g[j],则j’一定没用,因为j不但比他容易用,还比他效果好。
用set存储所有满足条件的pair<a[j],g[j]>,按a排序【则g也一定有序】。对于每个i,用lower_bound找到第一个>=它的,也就找到了最后一个<它的。用其更新答案。
用i更新完ans之后,需要把i也插入set中,为后面的元素服务。先判断i是否要插入(也就是有没有比他好的,只需要和刚才找见的最后一个<它的比较即可),再看插入之后可以删掉哪些元素(也就是没有它好的,向他前面一个一个找)。
uva 1471 defence lines——yhx的更多相关文章
- UVa 1471 Defense Lines - 线段树 - 离散化
题意是说给一个序列,删掉其中一段连续的子序列(貌似可以为空),使得新的序列中最长的连续递增子序列最长. 网上似乎最多的做法是二分查找优化,然而不会,只会值域线段树和离散化... 先预处理出所有的点所能 ...
- UVA - 1471 Defense Lines 树状数组/二分
Defense Lines After the last war devastated your country, you - as the ...
- uva 1471 Defense Lines
题意: 给一个长度为n(n <= 200000) 的序列,你删除一段连续的子序列,使得剩下的序列拼接起来,有一个最长的连续递增子序列 分析: 就是最长上升子序列的变形.需要加一个类似二分搜索就好 ...
- UVA - 1471 Defense Lines (set/bit/lis)
紫薯例题+1. 题意:给你一个长度为n(n<=200000)的序列a[n],求删除一个连续子序列后的可能的最长连续上升子序列的长度. 首先对序列进行分段,每一段连续的子序列的元素递增,设L[i] ...
- UVA 1471 Defense Lines 防线 (LIS变形)
给一个长度为n的序列,要求删除一个连续子序列,使剩下的序列有一个长度最大的连续递增子序列. 最简单的想法是枚举起点j和终点i,然后数一数,分别向前或向后能延伸的最长长度,记为g(i)和f(i).可以先 ...
- UVa 1471 Defense Lines (二分+set优化)
题意:给定一个序列,然后让你删除一段连续的序列,使得剩下的序列中连续递增子序列最长. 析:如果暴力枚举那么时间复杂度肯定受不了,我们可以先进行预处理,f[i] 表示以 i 结尾的连续最长序列,g[i] ...
- Uva 1471 Defense Lines(LIS变形)
题意: 给你一个数组,让你删除一个连续的子序列,使得剩下的序列中有最长上升子序列, 求出这个长度. 题解: 预处理:先求一个last[i],以a[i]为开始的合法最长上升子序列的长度.再求一个pre[ ...
- UVa 1471 (LIS变形) Defense Lines
题意: 给出一个序列,删掉它的一个连续子序列(该子序列可以为空),使得剩下的序列有最长的连续严格递增子序列. 分析: 这个可以看作lrj的<训练指南>P62中讲到的LIS的O(nlogn) ...
- 【uva 1471】Defense Lines(算法效率--使用数据结构+部分枚举+类贪心)
P.S.我完全一个字一个字敲出来的血泪史啊~~所以,没有附代码,也是可以理解的啦.OvO 题意:给一个长度为N(N≤200000)的序列,要删除一个连续子序列,使得剩下的序列中有一个长度最大的连续递增 ...
随机推荐
- 泛函编程(7)-数据结构-List-折叠算法
折叠算法是List的典型算法.通过折叠算法可以实现众多函数组合(function composition).所以折叠算法也是泛函编程里的基本组件(function combinator).了解折叠算法 ...
- Spark集群 + Akka + Kafka + Scala 开发(4) : 开发一个Kafka + Spark的应用
前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + S ...
- 小白初学ABP框架,着实累啊
这几天在学习ABP相关的知识AutoMapper ,AngularJS,Less,DI(dependencyInjection),EntityFramework code first以及相关NuGet ...
- Rendering Problems: No Android SDK found. Please configure an Android SDK. 怎解决?
Rendering Problems No Android SDK found. Please configure an Android SDK.
- LALR(1)语法分析生成器--xbytes
0.概述: 看了编译器龙书和虎书后,自己手动写了一个LALR(1)语法分析生成器,使用的语法文件格式和lemon的差不多. 程序里面很多的算法也都是摘录自虎书,龙书虽然讲的很详细,但是真正动手写的时候 ...
- SAP中关于用户IP信息的获取(转载)
SAP中如何获取登录用户的IP? 或如何查看哪些IP登录到SAP中: 在Table: USR41中查看,具体字段的说明如下: MANDT --- ClientBNAME --- 登录的 ...
- Mybatis学习记录(三)----理解SqlMapConfig.xml文件
SqlMapConfig.xml mybatis的全局配置文件SqlMapConfig.xml,配置内容如下: properties(属性) settings(全局配置参数) typeAliases( ...
- 导出你的GAC Assembly中的DLLS -- 金大昊(jindahao)
导出你的GAC Assembly中的DLLS 方法1: CMD命令中,进入C:\windows\assembly,然后XCOPY GAC_MSIL c:\temp /E 这样就得到了dlls了,以 ...
- Python: PDB命令
1. where(w) 找出当前代码运行位置 2. list(l) 显示当前代码的部分上下文 3. list <line number> 显示指定行的上下文 4. list <lin ...
- C语言中do...while(0)用法小结
在linux内核代码中,经常看到do...while(0)的宏,do...while(0)有很多作用,下面举出几个: 本文地址:http://www.cnblogs.com/archimedes/p/ ...