Stockbroker Grapevine

Time Limit: 1000MS
Memory Limit: 10000K

Description

Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers to give your employer the tactical edge in the stock market. For maximum effect, you have to spread the rumours in the fastest possible way.
Unfortunately for you, stockbrokers only trust information coming from their "Trusted sources" This means you have to take into account the structure of their contacts when starting a rumour. It takes a certain amount of time for a specific stockbroker to pass the rumour on to each of his colleagues. Your task will be to write a program that tells you which stockbroker to choose as your starting point for the rumour, as well as the time it will take for the rumour to spread throughout the stockbroker community. This duration is measured as the time needed for the last person to receive the information.

Input

Your program will input data for different sets of stockbrokers. Each set starts with a line with the number of stockbrokers. Following this is a line for each stockbroker which contains the number of people who they have contact with, who these people are, and the time taken for them to pass the message to each person. The format of each stockbroker line is as follows: The line starts with the number of contacts (n), followed by n pairs of integers, one pair for each contact. Each pair lists first a number referring to the contact (e.g. a '1' means person number one in the set), followed by the time in minutes taken to pass a message to that person. There are no special punctuation symbols or spacing rules.
Each person is numbered 1 through to the number of stockbrokers. The time taken to pass the message on will be between 1 and 10 minutes (inclusive), and the number of contacts will range between 0 and one less than the number of stockbrokers. The number of stockbrokers will range from 1 to 100. The input is terminated by a set of stockbrokers containing 0 (zero) people.

Output

For each set of data, your program must output a single line containing the person who results in the fastest message transmission, and how long before the last person will receive any given message after you give it to this person, measured in integer minutes.
It is possible that your program will receive a network of connections that excludes some persons, i.e. some people may be unreachable. If your program detects such a broken network, simply output the message "disjoint". Note that the time taken to pass the message from person A to person B is not necessarily the same as the time taken to pass it from B to A, if such transmission is possible at all.

Sample Input

3
2 2 4 3 5
2 1 2 3 6
2 1 2 2 2
5
3 4 4 2 8 5 3
1 5 8
4 1 6 4 10 2 7 5 2
0
2 2 5 1 5
0

Sample Output

3 2
3 10

[Submit]   [Go Back]   [Status]   [Discuss]

 

   1: #include <iostream>

   2: #include <cstdio>

   3: #include <cstring>

   4: #include <algorithm>

   5: using namespace std;

   6: const int INF=2147483647;

   7: const int maxn=100;

   8:  

   9: int g[maxn+2][maxn+2];//储存人际关系

  10: int n;

  11:  

  12: void floyd()

  13: {

  14:     int i,j,k;

  15:     for(k=0; k<n; k++)

  16:         for(i=0; i<n; i++)

  17:         {

  18:             if(g[i][k]!=0)//i,k之间有路径

  19:                 for(j=0; j<n; j++)

  20:                 {

  21:                     if(g[k][j]&&i!=j)//k,j之间有路径

  22:                         if(g[i][j]==0||(g[i][j]>g[i][k]+g[k][j]))

  23:                              g[i][j]=g[i][k]+g[k][j];

  24:                 }

  25:         }

  26: }

  27:  

  28: void show()//对本题无用,只是输出中间过程便于观察

  29: {

  30:     int i,j;

  31:     for( i=0;i<n;i++)

  32:     {

  33:         for(j=0; j<n; j++)

  34:            printf("%d ",g[i][j]);

  35:         printf("\n");

  36:     }

  37: }

  38:  

  39: void solve()

  40: {

  41:     int i,j,a,time,m;

  42:     memset(g,0,sizeof(g));

  43:     for(i=0; i<n; i++){

  44:         scanf("%d",&m);

  45:         for(j=0;j<m;j++){

  46:             scanf("%d%d",&a,&time);

  47:             g[i][--a]=time;

  48:         }

  49:     }

  50:     floyd();

  51:     //show();

  52:     int mi=INF;

  53:     for(i=0;i<n;i++)

  54:     {

  55:         time=0;

  56:         for(j=0; j<n; j++)

  57:             if(i!=j)

  58:             {

  59:                 if(g[i][j]==0){ time=INF; break; }

  60:                 time=max(g[i][j],time);

  61:             }

  62:         if(mi>time){

  63:             a=i,mi=time;

  64:         }

  65:     }

  66:     if(mi<INF) printf("%d %d\n", ++a, mi);

  67:     else printf("disjoint\n");

  68: }

  69:  

  70: int main()

  71: {

  72:     //freopen("in.txt","r",stdin);

  73:     while(scanf("%d",&n)&&n)

  74:         solve();

  75:     return 0;

  76: }

poj1125&zoj1082Stockbroker Grapevine(Floyd算法)的更多相关文章

  1. poj1125 Stockbroker Grapevine Floyd

    题目链接:http://poj.org/problem?id=1125 主要是读懂题意 然后就很简单了 floyd算法的应用 代码: #include<iostream> #include ...

  2. POJ1125-Stockbroker Grapevine Floyd算法多源最短路径

    这题的思路还是比较简单,用弗洛伊德算法打表后,枚举来找到最小值 代码如下 注意最后判断时候的语句 在这里错误了很多次 # include<iostream> # include<al ...

  3. Poj 1125 Stockbroker Grapevine(Floyd算法求结点对的最短路径问题)

    一.Description Stockbrokers are known to overreact to rumours. You have been contracted to develop a ...

  4. Stockbroker Grapevine(floyd)

    Stockbroker Grapevine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28231   Accepted: ...

  5. Floyd算法C++实现与模板题应用

    简介 Floyd算法算是最简单的算法,没有之一. 其状态转移方程如下map[i , j] =min{ map[i , k] + map[k , j] , map[i , j] }: map[i , j ...

  6. 最短路径之Floyd算法

    Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floy ...

  7. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  8. 最短路径问题——floyd算法

    floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法 ...

  9. floyd算法小结

    floyd算法是被大家熟知的最短路算法之一,利用动态规划的思想,f[i][j]记录i到j之间的最短距离,时间复杂度为O(n^3),虽然时间复杂度较高,但是由于可以处理其他相似的问题,有着广泛的应用,这 ...

随机推荐

  1. Try out the latest C++ compiler toolset without waiting for the next update of Visual Studio

    Updated 22/Apr/2016: The NuGet package is now being uploaded daily. The payload doesn’t change every ...

  2. 可访问性级别的C# 修饰符

    使用访问修饰符 public.protected.internal 或 private 可以为成员指定以下声明的访问级别之一. http://keleyi.com/a/bjad/3ccfqh95.ht ...

  3. Dynamics AX 中重点数据源方法

     数据源方法 描述   Active  当用户刚选中一行数据时执行该方法.若选中的是主表的数据,也用该方法来触发加载从表符合条件的数据.主要覆盖该方法来根据条件设置记录及其字段是否可见或是否可被编辑. ...

  4. QT分页控件,开源,供大家使用

    下载地址:http://files.cnblogs.com/dragonsuc/qt5.rar

  5. 【GOF23设计模式】代理模式

    来源:http://www.bjsxt.com/ 一.[GOF23设计模式]_代理模式.静态代理 package com.test.proxy.staticProxy; public interfac ...

  6. C# Sqlite 序列

    sqlite 不能直接创建自定义函数,不能像 sql server中那样方便创建并使用.不过我们照样可以创建它,创建成功后,我们照样可以随心所欲(比如批量更新等) 序列是一个数据库中很常用的操作,在其 ...

  7. ASP.NET本质论第一章网站应用程序学习笔记3-对象化的Http

    在.NET环境下,万物皆对象,在HttpRuntime收到请求之后,立即将通过HttpWorkerRequest传递的参数进行分析和分解,创建方便用于网站应用程序处理用的对象,其中主要涉及到两个对象类 ...

  8. spring task定时器笔记

    定时器有两种方式 1.延迟启动 <bean id="timerTaskRunnerChain" class="bingo.uam.task.TimerTaskRun ...

  9. ASP.NET MVC 微信公共平台开发之 微信接入

    ASP.NET MVC 接入微信公共平台 申请微信公共账号 既然要接入微信公共平台,微信公共号是必须的(当然如果只是测试的话也可以申请微信公共平台接口测试账号),来这里微信公共平台 申请微信公共号(注 ...

  10. jQuery.merge()

    jQuery.merge( first, second ) //返回Array 合并两个数组内容到第一个数组. first第一个用来合并的数组,元素是第二数组加进来的. second第二个数组合并到第 ...