Mahmoud and Ehab continue their adventures! As everybody in the evil land knows, Dr. Evil likes bipartite graphs, especially trees.

A tree is a connected acyclic graph. A bipartite graph is a graph, whose vertices can be partitioned into 2 sets in such a way, that for each edge (u, v) that belongs to the graph, u and v belong to different sets. You can find more formal definitions of a tree and a bipartite graph in the notes section below.

Dr. Evil gave Mahmoud and Ehab a tree consisting of n nodes and asked them to add edges to it in such a way, that the graph is still bipartite. Besides, after adding these edges the graph should be simple (doesn't contain loops or multiple edges). What is the maximum number of edges they can add?

A loop is an edge, which connects a node with itself. Graph doesn't contain multiple edges when for each pair of nodes there is no more than one edge between them. A cycle and a loop aren't the same .

Input

The first line of input contains an integer n — the number of nodes in the tree (1 ≤ n ≤ 105).

The next n - 1 lines contain integers u and v (1 ≤ u, v ≤ nu ≠ v) — the description of the edges of the tree.

It's guaranteed that the given graph is a tree.

Output

Output one integer — the maximum number of edges that Mahmoud and Ehab can add to the tree while fulfilling the conditions.

Examples

Input
3
1 2
1 3
Output
0
Input
5
1 2
2 3
3 4
4 5
Output
2

Note

Tree definition: https://en.wikipedia.org/wiki/Tree_(graph_theory)

Bipartite graph definition: https://en.wikipedia.org/wiki/Bipartite_graph

In the first test case the only edge that can be added in such a way, that graph won't contain loops or multiple edges is (2, 3), but adding this edge will make the graph non-bipartite so the answer is 0.

In the second test case Mahmoud and Ehab can add edges (1, 4) and (2, 5).

题意:给一个n个节点的,n-1条边,现在规定这个图拆成二分图,然后让你添加边,使他依然是二分图,问最多可以添加多少

思路:首先我们要分二分图,我采用了黑白染色,算出分别两边的节点数,然后我们可以得知,要加的边肯定就是剩下的黑白没有连边的点

公式: 总节点数-黑色节点数-当前黑色节点所连的白色节点数

然后累加所有的黑色节点值

#include<cstdio>
#include<cmath>
#include<vector>
#include<cstring>
using namespace std;
vector<int> d[];
int n;
int c[];
int vis[];
void dfs(int x,int y)//进行黑白染色
{
for(int i=;i<d[x].size();i++)
{
if(vis[d[x][i]]==)
{
vis[d[x][i]]=;
c[d[x][i]]=y;
dfs(d[x][i],!y);
}
}
}
int main()
{
scanf("%d",&n);
int x,y;
for(int i=;i<=n-;i++)
{
scanf("%d%d",&x,&y);
d[x].push_back(y);
d[y].push_back(x);
}
vis[]=;
dfs(,);
long long sum=;
int cnt=;
for(int i=;i<=n;i++)
{
if(c[i])
c[cnt++]=i;
}
for(int i=;i<cnt;i++)//公式计算
{
sum+=n-cnt-d[c[i]].size();
}
printf("%lld",sum);
}

E - Mahmoud and Ehab and the bipartiteness CodeForces - 862B (dfs黑白染色)的更多相关文章

  1. Codeforces 862B - Mahmoud and Ehab and the bipartiteness

    862B - Mahmoud and Ehab and the bipartiteness 思路:先染色,然后找一种颜色dfs遍历每一个点求答案. 代码: #include<bits/stdc+ ...

  2. Coderfroces 862 B . Mahmoud and Ehab and the bipartiteness

     Mahmoud and Ehab and the bipartiteness Mahmoud and Ehab continue their adventures! As everybody in ...

  3. CF862B Mahmoud and Ehab and the bipartiteness 二分图染色判定

    \(\color{#0066ff}{题目描述}\) 给出n个点,n-1条边,求再最多再添加多少边使得二分图的性质成立 \(\color{#0066ff}{输入格式}\) The first line ...

  4. codeforces 862B B. Mahmoud and Ehab and the bipartiteness

    http://codeforces.com/problemset/problem/862/B 题意: 给出一个有n个点的二分图和n-1条边,问现在最多可以添加多少条边使得这个图中不存在自环,重边,并且 ...

  5. 【Codeforces Round #435 (Div. 2) B】Mahmoud and Ehab and the bipartiteness

    [链接]h在这里写链接 [题意] 让你在一棵树上,加入尽可能多的边. 使得这棵树依然是一张二分图. [题解] 让每个节点的度数,都变成二分图的对方集合中的点的个数就好. [错的次数] 0 [反思] 在 ...

  6. CodeForces - 862B Mahmoud and Ehab and the bipartiteness(二分图染色)

    题意:给定一个n个点的树,该树同时也是一个二分图,问最多能添加多少条边,使添加后的图也是一个二分图. 分析: 1.通过二分图染色,将树中所有节点分成两个集合,大小分别为cnt1和cnt2. 2.两个集 ...

  7. E. Mahmoud and Ehab and the function Codeforces Round #435 (Div. 2)

    http://codeforces.com/contest/862/problem/E 二分答案 一个数与数组中的哪个数最接近: 先对数组中的数排序,然后lower_bound #include &l ...

  8. Codeforces 862B (二分图染色)

    <题目链接> 题目大意: 给出一个有n个点的二分图和n-1条边,问现在最多可以添加多少条边使得这个图中不存在自环,重边,并且此图还是一个二分图. 解题分析: 此题不难想到,假设二分图点集数 ...

  9. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

随机推荐

  1. antd-mobile的DatePicker日期选择组件使用

    现在项目上有个需求,在时间选择上需要精确到分钟,且分钟只能是0分钟或者是30分钟. 使用了antd-mobile的DatePicker组件,具体用法可参考:https://mobile.ant.des ...

  2. Thymeleaf使用bootstrap及其bootstrap相关插件(一)

    Bootstrap,来自 Twitter,是目前最受欢迎的前端框架.Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的,它简洁灵活,使得 Web 开发更加快捷. 在完成信息录入界面 ...

  3. 迭代器与泛型for

    迭代器与closure function allwords() local line=io.read() return function() while line do local s,e=strin ...

  4. Java环境下shiro的测试-认证与授权

    Java环境下shiro的测试 1.导入依赖的核心jar包 <dependency> <groupId>org.apache.shiro</groupId> < ...

  5. Docker的简单介绍及使用

    Docker介绍 Docker是Docker.Inc公司开源的一个基于LXC技术之上构建的Container容器引擎,源代码托管在GitHub上,基于Go语言并遵从Apache2.0协议开源. Doc ...

  6. Qt中QSlider的样式表设置

    转自: https://blog.csdn.net/tax10240809163com/article/details/50899023 //首先是设置主体QSlider{border-color: ...

  7. Elasticsearch安装部署(CentOS)

    1.安装JDK,http://www.cnblogs.com/zhi-leaf/p/5996287.html. 2.下载ES:https://www.elastic.co/downloads/elas ...

  8. 未能加载文件或程序集“Oracle.DataAccess”或它的某一个 依赖项。如何解决?

    之前项目做大数据批量添加使用了OracleBulkCopy,这个是引用Oracle.DataAccess.Client的命名空间,所以项目要引用一个Oracle.DataAccess.dll, 但是运 ...

  9. Consecutive Subsequence CodeForces - 977F(dp)

    Consecutive Subsequence CodeForces - 977F 题目大意:输出一序列中的最大的连续数列的长度和与其对应的下标(连续是指 7 8 9这样的数列) 解题思路: 状态:把 ...

  10. JavaScript中如何对一个对象进行深度clone

    <!doctype html><html><head><meta charset="utf-8"><title>深克隆& ...