from: https://www.linkedin.com/pulse/html-canvas-testing-selenium-opencv-maciej-kusz

Since HTML <canvas> become more and more popular for creating interactive content on any web page like games (especially since Adobe Flash technology is dying), there is a big problem with testing it using pure Selenium. If you have never seen <canvas> you may be wondering why? Mostly because <canvas> (like old Flash element) is seen in DOM structure just like element without any content even if there is a complex game inside, eg.

<canvas id="myCanvas" width="200" height="100"></canvas>

Using just Selenium you will be only able to locate <canvas> element and get its positionsize and some state, like isElementVisible, etc., but you will not be able to see what's inside and test internal behavior.

What can we do to test HTML <canvas>?

Since the <canvas> element is a container for graphics elements (with additional logic written in JavaScript) we can try to perform manual mouse actions using Selenium Action Chains. We have there a few useful action, like:

By combining only those 2 actions you will be able to click any button inside <canvas>element. But you will face 2 big problems:

  1. What are (x, y) coordinates of the center of button to be clicked?
  2. What is the current state of the game?

Get (x, y) coordinates the button center

We can approach this problem from 2 different directions:

  1. Prepare static (x, y) coordinate of the button center inside <canvas> element and use move_to_element_with_offset from Selenium Action Chain
  2. Get button center dynamically

Point 1 is quite easy to prepare using any graphics editing tool and we will not talk about it (going and easy path is not the way we follow at XCaliber, especially when the path is short and ends with a cliff). Reason for it is quite easy: we will need to implement dynamic method if we want to know a state of the game.

So how we can obtain button center coordinates dynamically?

We "just" need to "see" what's happening inside the <canvas> element. You can think: "easy to say, harder to do", but you will see that it's not that hard.

The best approach to "just see" problem is to use computer vision. Since Python has a very good binding for widely use the library called OpenCV, we can use it to solve this problem. In short, OpenCV is an image processing tool that will allow us to see what's happening inside <canvas> element.

In my previous article about Page Object Pattern, I have described how to prepare the object for XPath element locator. Let's use the same approach for a graphical locator.

Graphical locator

import cv2
import numpy
from io import BytesIO
from PIL import Image class GraphicalLocator(object): def __init__(self, img_path):
self.locator = img_path
# x, y position in pixels counting from left, top corner
self.x = None
self.y = None
self.img = cv2.imread(img_path)
self.height = self.img.shape[0]
self.width = self.img.shape[1]
self.threshold = None @propertydef center_x(self):return self.x + int(self.width / 2) \
if self.x and self.width else None @propertydef center_y(self):return self.y + int(self.height / 2) \
if self.y and self.height else None def find_me(self, drv):# Clear last found coordinates
self.x = self.y = None
# Get current screenshot of a web page
scr = drv.get_screenshot_as_png()
# Convert img to BytesIO
scr = Image.open(BytesIO(scr))
# Convert to format accepted by OpenCV
scr = numpy.asarray(scr, dtype=numpy.float32).astype(numpy.uint8)
# Convert image from BGR to RGB format
scr = cv2.cvtColor(scr, cv2.COLOR_BGR2RGB) # Image matching works only on gray images
# (color conversion from RGB/BGR to GRAY scale)
img_match = cv2.minMaxLoc(
cv2.matchTemplate(cv2.cvtColor(scr, cv2.COLOR_RGB2GRAY),
cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY),
cv2.TM_CCOEFF_NORMED)) # Calculate position of found element
self.x = img_match[3][0]
self.y = img_match[3][1] # From full screenshot crop part that matches template image
scr_crop = scr[self.y:(self.y + self.height),
self.x:(self.x + self.width)] # Calculate colors histogram of both template# and matching images and compare them
scr_hist = cv2.calcHist([scr_crop], [0, 1, 2], None,
[8, 8, 8], [0, 256, 0, 256, 0, 256])
img_hist = cv2.calcHist([self.img], [0, 1, 2], None,
[8, 8, 8], [0, 256, 0, 256, 0, 256])
comp_hist = cv2.compareHist(img_hist, scr_hist,
cv2.HISTCMP_CORREL) # Save treshold matches of: graphical image and image histogram
self.threshold = {'shape': round(img_match[1], 2),'histogram': round(comp_hist, 2)} # Return image with blue rectangle around match
return cv2.rectangle(scr, (self.x, self.y),
(self.x + self.width, self.y + self.height),
(0, 0, 255), 2)

  



The code above should be self-explained. The main reason for this is to provide the same interface as for XPath element locator. Having above you can do something like this if you want to test if given image is present on a web page:

img_check = GraphicalLocator("/path/to/image.png")
img_check.find_me(webdriver_instance)

Problem with above code is that it can give you false positive matches.

How to defend against false positive matches?

Take a look at GraphicalLocator object and its threshold attribute. It contains 2 values:

  1. The threshold for image shape match is telling us how similar both images are (the one you are looking for and found one). If value equals 1 then images shapes are identical.
  2. The threshold for image colors histogram match is telling us how similar colors of both images are. If value equals 1 then images colors histograms are identical.

Why do we need those 2 thresholds? Take a look at pictures below:

Both images present the same button, but in 2 different states (enabled and disabled). When you will try to find the first image and the second one will be present, shape threshold will be set to 1. It's happened because OpenCV image matching algorithm works on grey scaled images. In grey scale, both images shape is the same. Because of that, when you want to be sure that image you are looking for, is an image you can see, you need to check not only if the shape is identical but also colors of the images are the same. It's why there is also color histogram threshold calculated during image finding. This way code for checking is image present, should lock like this:

img_check = GraphicalLocator("/path/to/img.png")
img_check.find_me(webdriver_instance) is_found = True if img_check.threshold['shape'] >= 0.8 and \
img_check.threshold['histogram'] >= 0.4 else False

Values of thresholds to compare should be chosen during some experiments (those are working for me).

How to click?

Now the best part. Just take a look at this code snippet:

from selenium.webdriver.common.action_chains import ActionChains

img_check = GraphicalLocator("/path/to/img.png")
img_check.find_me(webdriver_instance) is_found = True if img_check.threshold['shape'] >= 0.8 and \
img_check.threshold['histogram'] >= 0.4 else False if is_found:
action = ActionChains(webdriver_instance)
action.move_by_offset(img_check.center_x, img_check.center_y)
action.click()
action.perform()

Conclusion

As you can see it's not so hard to check if the image is visible in the <canvas> element and click on it. Extending this approach with allow you check the current state of the game, because of state checking will be based on visibility or invisibility of some elements.

PS. It also works with Flash elements ;)

HTML <​canvas> testing with Selenium and OpenCV的更多相关文章

  1. Functional testing - python, selenium and django

    Functional testing  - python selenium django - Source Code : from selenium import webdriverfrom sele ...

  2. 使用Selenium和openCV对HTML5 canvas游戏进行自动化功能测试(一)

    上一篇讲了HTML5 canvas游戏的基本工作原理,接下来讲如何进行自动化功能测试. Selenium是一个跨平台的跨浏览器的对网页进行自动化测试的工具.从Selenium 2.0开始Seleniu ...

  3. 300+ Manual Testing and Selenium Interview Questions and Answers

    Manual testing is a logical approach and automation testing complements it. So both are mandatory an ...

  4. How to click on a point on an HTML5 canvas in Python selenium webdriver

    https://stackoverflow.com/questions/29624949/how-to-click-on-a-point-on-an-html5-canvas-in-python-se ...

  5. HTML5 canvas游戏工作原理

    HTML5已经不是一个新名词.它看上去很cool,有很多feature,大多数人普遍看好它的发展.对于我来说,最感兴趣的是它的canvas标签,可以结合Javascript来绘制游戏画面. 我们可以在 ...

  6. 简单的HTML5 canvas游戏工作原理

    HTML5已经不是一个新名词.它看上去很cool,有很多feature,大多数人普遍看好它的发展.对于我来说,最感兴趣的是它的canvas标签,可以结合Javascript来绘制游戏画面. 我们可以在 ...

  7. 所有selenium相关的库

    通过爬虫 获取 官方文档库 如果想获取 相应的库 修改对应配置即可 代码如下 from urllib.parse import urljoin import requests from lxml im ...

  8. JavaScript(Node.js)+ Selenium自动化测试

    Selenium is a browser automation library. Most often used for testing web-applications, Selenium may ...

  9. [转] 以后再有人问你selenium是什么,你就把这篇文章给他

    本文转自:https://blog.csdn.net/TestingGDR/article/details/81950593 写在最前面:目前自动化测试并不属于新鲜的事物,或者说自动化测试的各种方法论 ...

随机推荐

  1. 多线程——newFixedThreadPool线程池

    newFixedThreadPool线程池: 理解: 1.固定线程数的线程池. 2.通过Executors中的静态方法创建:     public static ExecutorService new ...

  2. css实现右侧固定宽度,左侧宽度自适应

    https://blog.csdn.net/qq_22889599/article/details/78414040 反过来也可以:左侧宽度固定,右侧自适应.不管是左是右,反正就是一边宽度固定,一边宽 ...

  3. keras实例学习-双向LSTM进行imdb情感分类

    源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1. ...

  4. MySQL数据类型--与MySQL零距离接触2-8查看数据表

    SHOW COLUMNS FROM tb_name 写入列之后,需要写入行,也就是记录:INSERT 插入记录:INSERT [INTO]  tbl_name  [(col_name,...)]  V ...

  5. java面试中经常会被问到分布式面试题

    1.Dubbo的底层实现原理和机制 –高性能和透明化的RPC远程服务调用方案 –SOA服务治理方案 Dubbo缺省协议采用单一长连接和NIO异步通讯, 适合于小数据量大并发的服务调用,以及服务消费者机 ...

  6. Stephen Wolfram自述

    Stephen Wolfram自述   作者: 阮一峰 大家听说过Stephen Wolfram(斯蒂芬·沃尔夫勒姆)吗? 了解他的经历和成就吗? 我对他了解不多,但是读了下面这篇2005年的演讲,联 ...

  7. RabbitMq入门详解

    因为项目中需要用到RabbitMq,所有花时间研究了下,虽然博客园已经有前辈写了关于RabbitMq的文章.但还是有必要研究下! 什么是RabbitMq? 百度解释:MQ全称为Message Queu ...

  8. php背景图片上生成二维码,二维码上带logo 代码示例 (原)

    依赖库文件 phpqrcode.php (下载地址://www.jb51.net/codes/189897.html :或者在官网下载:http://phpqrcode.sourceforge.net ...

  9. 字符串转Int—parseInt源码实现。

    public static int parseInt(String s, int radix) throws NumberFormatException{ /* * WARNING: This met ...

  10. Java之.jdk安装-Windows

    jdk安装-windows 1. window + r,然后输入:cmd,打开黑窗口. 2. 分别输入 java -version .javac -version,检查jdk版本信息. 如果javac ...