numpy.where
np.where(condition[, x, y])
如果是一维,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
输入条件,类数组形式,若判断结果成立则返回x,否则为y。
返回为tuple或者array。
当条件对象为一维,返回array。
条件对象为二维,返回tuple。第一部分为矩阵行的坐标,第二部分为矩阵列的坐标。
当条件对象维高维,按照二维矩阵操作,判断其中对象。
np.eye(n)生成对象数组,在np.where中按照一维操作及返回。
以下为scipy doc原文。
numpy.where
- numpy.where(condition[, x, y])
-
Return elements, either from x or y, depending on condition.
If only condition is given, return condition.nonzero().
Parameters: condition : array_like, bool
When True, yield x, otherwise yield y.
x, y : array_like, optional
Values from which to choose. x and y need to have the same shape as condition.
Returns: out : ndarray or tuple of ndarrays
If both x and y are specified, the output array contains elements of x where condition is True, and elements from y elsewhere.
If only condition is given, return the tuple condition.nonzero(), the indices where condition is True.
Notes
If x and y are given and input arrays are 1-D, where is equivalent to:
[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]
np.where()
Examples >>>
>>> np.where([[True, False], [True, True]],
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],
[3, 4]])
>>>
>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))
>>>
>>> x = np.arange(9.).reshape(3, 3)
>>> np.where( x > 5 )
(array([2, 2, 2]), array([0, 1, 2]))
>>> x[np.where( x > 3.0 )] # Note: result is 1D.
array([ 4., 5., 6., 7., 8.])
>>> np.where(x < 5, x, -1) # Note: broadcasting.
array([[ 0., 1., 2.],
[ 3., 4., -1.],
[-1., -1., -1.]])
Find the indices of elements of x that are in goodvalues. >>>
>>> goodvalues = [3, 4, 7]
>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)
>>> ix
array([[False, False, False],
[ True, True, False],
[False, True, False]], dtype=bool)
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))
scipy doc : np.where()
numpy.where的更多相关文章
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 利用Python进行数据分析(6) NumPy基础: 矢量计算
矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...
- python安装numpy、scipy和matplotlib等whl包的方法
最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...
- 深入理解numpy
一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...
- Python Numpy,Pandas基础笔记
Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...
- broadcasting Theano vs. Numpy
broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...
- python之numpy
一.矩阵的拼接合并 列拼接:np.column_stack() >>> import numpy as np >>> a = np.arange(9).reshap ...
- win7系统下python安装numpy,matplotlib,scipy和scikit-learn
1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...
- 给numpy矩阵添加一列
问题的定义: 首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3], ...
随机推荐
- Zabbix agent 在windows上安装部署
Zabbix agent 在windows上安装部署 1.下载与解压 地址: http://www.zabbix.com/downloads/2.4.4/zabbix_agents_2.4.4.win ...
- shell脚本死循环检查是否有特定的路由,若存在进行删除操作
while [ 1 ] do tun0_route=`ip route |grep -ci "100.100.80.0"` if [ $tun0_route -eq 0 ];the ...
- 美化你的GRUB,全面支持中文(菜单、提示、帮助)适用7.04-9.04
本文根据网络资料整理而成,在此鸣谢各位作者. 本方法适合 7.04-9.04版本,9.10使用了grub2,请看这里. http://forum.ubuntu.org.cn/viewtopic.php ...
- 腾讯企业邮箱设置发送邮件的配置(针对smtp)
QQ邮箱也是如下配置,不过需要进行开启smtp
- SpringCloud服务间调用
SpringCloud服务间的调用有两种方式:RestTemplate和FeignClient.不管是什么方式,他都是通过REST接口调用服务的http接口,参数和结果默认都是通过jackson序列化 ...
- PySpark 的背后原理
文章正文 Spark主要是由Scala语言开发,为了方便和其他系统集成而不引入scala相关依赖,部分实现使用Java语言开发,例如External Shuffle Service等.总体来说,Spa ...
- R8500 MPv2 版本 刷 Kong编译的 ddwrt 后,使用Entware-ng 安装opkg安装第三方软件
先说R8500吧. 由于Netgear网件的问题导致R8500在去年双11前夕出现了全球范围的Boot Loop的问题,现象为新设备开机一段时间后,路由器进入不停重启的状态,电源灯桔黄色.在和网件工程 ...
- JAVA和JAVAC 命令行
转自:http://www.blogjava.net/pdw2009/archive/2008/06/12/207413.html?opt=admin javac和java命令行中的-classpat ...
- FFmpeg: AVPacket 结构体分析
AVPacket是FFmpeg中很重要的一个数据结构,它保存了解封装之后,解码之前的数据(注意:仍然是压缩后的数据)和关于这些数据的一些附加信息,如显示时间戳(pts).解码时间戳(dts).数据时长 ...
- “RESOURCE MONITOR“CPU占用特别高
背景: SQL Server 2008 R2 10.50.1600 没有设置页面文件,内存为64G,数据库分配50G cpu使用占了50%以上,平时只有10-20%,某台服务器“RESOURCE MO ...