Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. 
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. 
 
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
 
Source
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; struct Point
{
double x, y ;
} p[M];
int n ;
double Area( Point p0, Point p1, Point p2 )
{
double area = ;
area = p0.x * p1.y + p1.x * p2.y + p2.x * p0.y - p1.x * p0.y - p2.x * p1.y - p0.x * p2.y;// 求三角形面积公式
return area / ; //另外在求解的过程中,不需要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
}
pair<double,double> xjhz()
{
double sum_x = ,sum_y = ,sum_area = ;
for ( int i = ; i < n ; i++ )
{
double area = Area(p[],p[i-],p[i]) ;
sum_area += area ;
sum_x += (p[].x + p[i-].x + p[i].x) * area ;
sum_y += (p[].y + p[i-].y + p[i].y) * area ;
}
return make_pair(sum_x / sum_area / , sum_y / sum_area / ) ;
}
int main ()
{
int T;
scanf ( "%d", &T ) ;
while ( T -- )
{
scanf ( "%d", &n ) ;
for(int i=; i<n; i++)
scanf ( "%lf%lf", &p[i].x, &p[i].y ) ;
pair<double,double> ans=xjhz();
printf("%.2f %.2f\n",ans.first,ans.second);
}
return ;
}

hdu 1115 Lifting the Stone 多边形的重心的更多相关文章

  1. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  3. hdu 1115 Lifting the Stone (数学几何)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. POJ1385 Lifting the Stone 多边形重心

    POJ1385 给定n个顶点 顺序连成多边形 求重心 n<=1e+6 比较裸的重心问题 没有特别数据 由于答案保留两位小数四舍五入 需要+0.0005消除误差 #include<iostr ...

  7. Hdoj 1115.Lifting the Stone 题解

    Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...

  8. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  9. (hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)

    题目: Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. python colorama模块

    colorama是一个python专门用来在控制台.命令行输出彩色文字的模块,可以跨平台使用. 1. 安装colorama模块 pip install colorama 可用格式常数: Fore: B ...

  2. Python爬虫_Selenium与PhantomJS

    Selenium是一个Web的自动化测试工具,最初是为网站自动化测试而开发的,最初是为网站自动化测试而开发的,类型像我们玩游戏用的按键精灵,可以按指定的命令自动化操作,不同是Selenium可以直接运 ...

  3. Errors occurred during the build. Errors running builder 'Validation' on pro

    选择项目-->右键-->Properties-->Builders   右面有四个选项,把Validation前面勾去掉

  4. linux下的ifconfig命令

    ifconfig工具不仅可以被用来简单地获取网络接口配置信息,还可以修改这些配置. 1.命令格式: ifconfig [网络设备] [参数] 2.命令功能: ifconfig 命令用来查看和配置网络设 ...

  5. P5241 序列(滚动数组+前缀和优化dp)

    P5241 序列 挺神仙的一题 看看除了dp好像没什么其他办法了 想着怎么构个具体的图出来,然鹅不太现实. 于是我们想办法用几个参数来表示dp数组 加了几条边肯定要的吧,于是加个参数$i$表示已加了$ ...

  6. socket编程-阻塞和非阻塞

    转自:https://www.cnblogs.com/sunziying/p/6501045.html 建立连接 阻塞方式下,connect首先发送SYN请求道服务器,当客户端收到服务器返回的SYN的 ...

  7. 【RMAN】使用RMAN的 Compressed Backupsets备份压缩技术 (转载)

    1.Oracle参考文档中关于RMAN备份压缩的描述1)关于如何通过调整RMAN参数启用取消备份压缩功能http://download.oracle.com/docs/cd/B19306_01/bac ...

  8. Magnum Kubernetes源码分析(一)

    Magnum版本说明 本文以magnum的mitaka版本代码为基础进行分析. Magnum Kubernetes Magnum主要支持的概念有bay,baymodel,node,pod,rc,ser ...

  9. topcoder srm 530 div1

    problem1 link 对于每个还未切掉的‘X’用cutter作用一次.从左上角到右下角,依次判断即可. problem2 link 首先,如果一个顶点不能从0到达或者不能到达节点$n-1$,那么 ...

  10. Python3 tkinter基础 Label compound 图片上显示文字 fg字体颜色 font字体大小

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...