Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon. 
 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line. 
 
Output
Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
 
Source
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<bitset>
#include<set>
#include<map>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; struct Point
{
double x, y ;
} p[M];
int n ;
double Area( Point p0, Point p1, Point p2 )
{
double area = ;
area = p0.x * p1.y + p1.x * p2.y + p2.x * p0.y - p1.x * p0.y - p2.x * p1.y - p0.x * p2.y;// 求三角形面积公式
return area / ; //另外在求解的过程中,不需要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
}
pair<double,double> xjhz()
{
double sum_x = ,sum_y = ,sum_area = ;
for ( int i = ; i < n ; i++ )
{
double area = Area(p[],p[i-],p[i]) ;
sum_area += area ;
sum_x += (p[].x + p[i-].x + p[i].x) * area ;
sum_y += (p[].y + p[i-].y + p[i].y) * area ;
}
return make_pair(sum_x / sum_area / , sum_y / sum_area / ) ;
}
int main ()
{
int T;
scanf ( "%d", &T ) ;
while ( T -- )
{
scanf ( "%d", &n ) ;
for(int i=; i<n; i++)
scanf ( "%lf%lf", &p[i].x, &p[i].y ) ;
pair<double,double> ans=xjhz();
printf("%.2f %.2f\n",ans.first,ans.second);
}
return ;
}

hdu 1115 Lifting the Stone 多边形的重心的更多相关文章

  1. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  3. hdu 1115 Lifting the Stone (数学几何)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. poj 1115 Lifting the Stone 计算多边形的中心

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. Lifting the Stone(多边形重心)

    Lifting the Stone Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. POJ1385 Lifting the Stone 多边形重心

    POJ1385 给定n个顶点 顺序连成多边形 求重心 n<=1e+6 比较裸的重心问题 没有特别数据 由于答案保留两位小数四舍五入 需要+0.0005消除误差 #include<iostr ...

  7. Hdoj 1115.Lifting the Stone 题解

    Problem Description There are many secret openings in the floor which are covered by a big heavy sto ...

  8. hdu1115 Lifting the Stone(几何,求多边形重心模板题)

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...

  9. (hdu step 7.1.3)Lifting the Stone(求凸多边形的重心)

    题目: Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. SQL语句执行性能

    通过设置STATISTICS我们可以查看执行SQL时的系统情况.选项有PROFILE,IO ,TIME.介绍如下: SET STATISTICS PROFILE ON:显示分析.编译和执行查询所需的时 ...

  2. 编写一个JavaWeb项目

    基本流程:JSP文件显示页面,在前端页面输入赋值,使用form或href超链接传值到Servlet中方法,在Servlet方法中调用Dao层的类对象,将数据传到数据库中,并实现对数据库里的数据的增删改 ...

  3. Python 监控脚本(硬盘、cpu、内存、网卡、进程)

    #磁盘使用率disk = psutil.disk_partitions()for i in disk:    print "磁盘:%s   分区格式:%s"%(i.device,i ...

  4. Powerpoint 演示时定时提醒工具

    经常碰到这样的场景,规定的演讲报告时间所剩无几,甚至是已经超时,但演讲者并不知情,做为主持人只能从旁边轻轻的善意的提醒,但有时演讲者会没注意到主持人的提醒... 这里要介绍的就是这样一款用于提醒演讲者 ...

  5. JS笔记—03(DOM编程)

    1. 动态体现:HTML代码加载到浏览器,代码运行后改变文档(DOM树)增删改查节点.例如:ajax(不是新技术,是几个技术的合体js+http后台操作)就是这样的原理 2.js对象(浏览器对象.脚本 ...

  6. use right spindle drive

    Hardware software interface: HallSupplyLeft: E_BSW_DO_SUP_HCOM_A Left Hall Sensor: E_BSW_DI_HALL_A_1 ...

  7. gnats配置文件

    尽管NATS可以无配置的运行,但也可以使用配置文件配置NATS服务器 1. 配置项包括 客户端监听器端口 Client listening port HTTP监听器端口 HTTP monitoring ...

  8. mysql/oracle jdbc大数据量插入优化

    10.10.6  大数据量插入优化 在很多涉及支付和金融相关的系统中,夜间会进行批处理,在批处理的一开始或最后一般需要将数据回库,因为应用和数据库通常部署在不同的服务器,而且应用所在的服务器一般也不会 ...

  9. Linear Regression with PyTorch

    Linear Regression with PyTorch Problem Description 初始化一组数据 \((x,y)\),使其满足这样的线性关系 \(y = w x + b\) .然后 ...

  10. Bugku-CTF之web基础$_GET

    Day3   web基础$_GET   http://123.206.87.240:8002/get/   打开之后是一段代码