这里权当一个matplotlib的用法小结,主要用于记录,以防忘记。

需要安装一下Anaconda,这里推荐清华大学的镜像:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

matplotlib能将数据进行可视化,更直观地呈现。使数据更加客观,更具说服力。

1. 折线图

from matplotlib import pyplot as plt

# E:\Anaconda3\Library\bin添加到环境变量
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 26, 24, 22, 18, 15] # 设置图片大小,宽20,高8,像素80
plt.figure(figsize=(20, 8), dpi=80) # 设置x轴的刻度
_xtick_labels = [i / 2 for i in range(4, 49)]
plt.xticks(_xtick_labels[::3]) #步长取3 plt.yticks(range(min(y), max(y) + 1)) # 绘图
plt.plot(x, y) # 保存,svg矢量图格式,放大不会有锯齿
plt.savefig('./t1.svg') # 展示图形
plt.show()

2. 设置中文

import random

from matplotlib import pyplot as plt, font_manager

#设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) x = range(120)
y = [random.randint(20, 35) for i in range(120)] plt.figure(figsize=(20, 8), dpi=80) # 调整x轴的刻度
# _x = list(x)[::10]
# _xtick_labels = ['hello,{}'.format(i) for i in _x]
# plt.xticks(_x, _xtick_labels) _x = list(x)
_xtick_labels = ['10点{}分'.format(i) for i in range(60)]
_xtick_labels += ['11点{}分'.format(i) for i in range(60)]
#rotation是逆时针旋转角度
# plt.xticks(_x[::3], _xtick_labels[::3], rotation = 45, fontproperties = 'SimHei') #这样是可以的
plt.xticks(_x[::3], _xtick_labels[::3], rotation = 45, fontproperties = my_font) plt.yticks(range(min(y), max(y) + 1)) #添加描述信息
plt.xlabel('时间', fontproperties = my_font)
plt.ylabel('温度 单位(℃)', fontproperties = my_font)
plt.title('10点到12点每分钟的气温变化情况', fontproperties = my_font)
#网格
#alpha是透明度,0最透明,1最明显
plt.grid(alpha = 0.3) plt.plot(x, y)
plt.show()

3. 多个折线图

图例的位置loc:

from matplotlib import pyplot as plt, font_manager

plt.figure(figsize=(20, 8), dpi=80)
x = range(11, 31)
y1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
y2 = [1,0,3,1,2,2,3,3,2,1,2,1,1,1,1,1,1,1,1,1] #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) plt.xticks(x, ['{}岁'.format(i) for i in list(x)], fontproperties = my_font)
plt.yticks([i / 2 for i in range(2 * min(y1), 2 * max(y1) + 1)]) #描述信息
plt.xlabel('年龄', fontproperties = my_font)
plt.ylabel('数量', fontproperties = my_font)
plt.title('统计个数', fontproperties = my_font, size = 18) #网格
#alpha是透明度
#linestyle -是实线 :是点虚线 --是线虚线 -.是点线虚线
plt.grid(alpha = 0.9, linestyle = ':') #两个都画
plt.plot(x, y1, label = '陈驰', color = 'red', linestyle = '--', linewidth = 3)
plt.plot(x, y2, label = '石泽涛', color = 'blue', linestyle = '-.', linewidth = 1) #添加图例
#这里显示中文需要注意一下
plt.legend(prop=my_font, loc=2) plt.show()

4. 散点图

from matplotlib import pyplot as plt, font_manager

y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6] x_3 = range(1, 32)
x_10 = range(51, 82) plt.figure(figsize=(20, 8), dpi=80) #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) #画散点图
plt.scatter(x_3, y_3, label = '3月份')
plt.scatter(x_10, y_10, label = '10月份') _x = list(x_3) + list(x_10)
_xtick_labels = ['3月{}日'.format(i) for i in x_3]
_xtick_labels += ['10月{}日'.format(i - 50) for i in x_10] plt.xticks(_x[::3], _xtick_labels[::3], fontproperties = my_font, rotation = 45)
plt.yticks(range(min(y_3 + y_10), max(y_3 + y_10) + 1)) #添加图例
plt.legend(prop = my_font, loc = 2) #设置描述信息
plt.xlabel('时间', fontproperties = my_font)
plt.ylabel('温度(℃)', fontproperties = my_font)
plt.title('统计月份温度', fontproperties = my_font, size = 19) plt.grid(alpha = 0.4, linestyle = ':') plt.show()

5. 柱状图

from matplotlib import pyplot as plt, font_manager

a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章",
"乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ] b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
6.86, 6.58, 6.23] #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) plt.figure(figsize=(20, 8), dpi=80) plt.yticks(range(len(a)), a, fontproperties = my_font)
plt.xticks(list(range(int(min(b)), int(max(b)) + 1))[::2]) plt.ylabel('电影', fontproperties = my_font)
plt.xlabel('票房(亿元)', fontproperties = my_font)
plt.title('2017电影票房统计', fontproperties = my_font, size = 19) #width是条形图宽度
#bar是竖着的(width属性),barh是横着的(height属性)
plt.barh(range(len(a)), b, height = 0.3, color = 'orange') plt.grid(alpha = 0.3, linestyle = ':') plt.show()

6. 直方图

from matplotlib import pyplot as plt, font_manager

#设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362] plt.figure(figsize=(20, 8), dpi=80) _x = list(range(len(a)))
_bar_width = 0.1 plt.xticks([i + _bar_width for i in _x], a, fontproperties = my_font) plt.xlabel('电影', fontproperties = my_font)
plt.ylabel('票房', fontproperties = my_font)
plt.title('不同天的电影票房', fontproperties = my_font, size = 20) plt.bar(_x, b_16, width = _bar_width, label = '9月16日')
plt.bar([i + _bar_width for i in _x], b_15, width = _bar_width, label = '9月15日')
plt.bar([i + _bar_width * 2 for i in _x], b_14, width = _bar_width, label = '9月14日') plt.legend(prop = my_font, loc = 0) plt.show()

要想进一步学习,参考:

https://matplotlib.org/gallery/index.html

或者选用:

https://plot.ly/python/

[数据]matplotlib总结的更多相关文章

  1. 可视化数据matplotlib之安装与简单折线图

    matplotlib是一个可视化数据的模块,安装前需要先安装Visual Studio Community:然后去https://pypi.python.org/pypi上查找matplotlib并下 ...

  2. python爬取旅游数据+matplotlib简单可视化

    题目如下: 共由6个函数组成: 第一个函数爬取数据并转为DataFrame: 第二个函数爬取数据后存入Excel中,对于解题来说是多余的,仅当练手以及方便核对数据: 后面四个函数分别对应题目中的四个m ...

  3. python Matplotlib数据可视化神器安装与基本应用

    Matplotlib Matplotlib 是一个非常强大的 Python 画图工具; 手中有很多数据, Matplotlib能帮你画出美丽的: 线图; 散点图; 等高线图; 条形图; 柱状图; 3D ...

  4. python实战学习之matplotlib绘图

    matplotlib 是最流行的Python底层绘图库,主要做数据可视化图表 可以将数据可视化,能够更直观的呈现数据 matplotlib绘图基本要点 首先实现一个简单的绘图 # 导入pyplot f ...

  5. 无用之学matplotlib,numpy,pandas

    一.matplotlib学习 matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建 例子1: # coding=utf- from ...

  6. matplotlib表面三维图

    1.basic numpy.meshgrid 由一维数组到二维数组,用于生成网格数据 matplotlib python绘图库 2.code In [88]: from mpl_toolkits.mp ...

  7. 11-2 numpy/pandas/matplotlib模块

    目录 numpy模块 一维数组 二维数组 列表list和numpy的区别 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的合并 通过函数方法创建多维数组 矩阵的运算 求最大值最小值 nump ...

  8. day18-常用模块III (numpy、pandas、matplotlib)

    目录 numpy模块 创建矩阵 获取矩阵的行列数 切割矩阵 矩阵元素替换 矩阵的合并 通过函数创建矩阵 矩阵的运算 矩阵的点乘与转置 矩阵的逆 矩阵的其他操作 numpy.random生成随机数 pa ...

  9. ApacheCN 数据科学译文集 20211109 更新ApacheCN 数据科学译文集 20211109 更新

    计算与推断思维 一.数据科学 二.因果和实验 三.Python 编程 四.数据类型 五.表格 六.可视化 七.函数和表格 八.随机性 九.经验分布 十.假设检验 十一.估计 十二.为什么均值重要 十三 ...

随机推荐

  1. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  2. [CF98E]Help Shrek and Donkey(纳什均衡)

    https://www.cnblogs.com/MashiroSky/p/6576398.html #include<cstdio> #include<algorithm> # ...

  3. centos7环境下对防火墙的操作

    我是运行了systemctl stop firewalld.service && systemctl disabl e firewalld.service命令于是显示 [root@in ...

  4. C#高级编程9-第13章 异步编程

    异步编程 1)异步编程的重要性 在C#5.0中提供了关键字:async和await 使用异步编程后台运行方法调用,程序的运行过程中就不会一直处于等待中.便于用户继续操作. 异步编程有3种模式:异步模式 ...

  5. PLSQL连接Oracle 数据库配置详解

    1. 下载instantclient-basic-win32-11.2.0.1.0 (oracle官网下载地址:http://www.oracle.com/technetwork/topics/win ...

  6. 系统学习NLP(二十一)--SWEM

    https://blog.csdn.net/App_12062011/article/details/88655589 这篇发表在 ACL 2018 上的论文来自于杜克大学 Lawrence Cari ...

  7. 使用JDBC在MySQL数据库中快速批量插入数据

    使用JDBC连接MySQL数据库进行数据插入的时候,特别是大批量数据连续插入(10W+),如何提高效率呢? 在JDBC编程接口中Statement 有两个方法特别值得注意: void addBatch ...

  8. eclipse中的yaml插件

    现在spring中推荐使用yaml格式的配置文件,扩展名为yml 在eclipse中编辑的话,可以安装yaml编辑插件,在Eclipse Marketpalce可以搜到两款: YEdit的推荐指数38 ...

  9. c++设计一个无法被继承的类

    要求是该类不能被继承,但是能够像正常的类一样使用.那么一下方法就不符合题目要求: 1.构造函数和析构函数设置为private.这样就不能定义一个类的实例 2.类似于singleton模式那样,定义一个 ...

  10. vue中Axios请求豆瓣API数据并展示到Swipe中

    vue中Axios请求豆瓣API数据并展示到Swipe中 1.首先是安装Axios: 安装方法cnpm install axios --save 等待npm安装完毕: 2.在main.js中引入axi ...