[数据]matplotlib总结
这里权当一个matplotlib的用法小结,主要用于记录,以防忘记。
需要安装一下Anaconda,这里推荐清华大学的镜像:https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
matplotlib能将数据进行可视化,更直观地呈现。使数据更加客观,更具说服力。
1. 折线图
from matplotlib import pyplot as plt # E:\Anaconda3\Library\bin添加到环境变量
x = range(2, 26, 2)
y = [15, 13, 14.5, 17, 20, 25, 26, 26, 24, 22, 18, 15] # 设置图片大小,宽20,高8,像素80
plt.figure(figsize=(20, 8), dpi=80) # 设置x轴的刻度
_xtick_labels = [i / 2 for i in range(4, 49)]
plt.xticks(_xtick_labels[::3]) #步长取3 plt.yticks(range(min(y), max(y) + 1)) # 绘图
plt.plot(x, y) # 保存,svg矢量图格式,放大不会有锯齿
plt.savefig('./t1.svg') # 展示图形
plt.show()

2. 设置中文


import random from matplotlib import pyplot as plt, font_manager #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) x = range(120)
y = [random.randint(20, 35) for i in range(120)] plt.figure(figsize=(20, 8), dpi=80) # 调整x轴的刻度
# _x = list(x)[::10]
# _xtick_labels = ['hello,{}'.format(i) for i in _x]
# plt.xticks(_x, _xtick_labels) _x = list(x)
_xtick_labels = ['10点{}分'.format(i) for i in range(60)]
_xtick_labels += ['11点{}分'.format(i) for i in range(60)]
#rotation是逆时针旋转角度
# plt.xticks(_x[::3], _xtick_labels[::3], rotation = 45, fontproperties = 'SimHei') #这样是可以的
plt.xticks(_x[::3], _xtick_labels[::3], rotation = 45, fontproperties = my_font) plt.yticks(range(min(y), max(y) + 1)) #添加描述信息
plt.xlabel('时间', fontproperties = my_font)
plt.ylabel('温度 单位(℃)', fontproperties = my_font)
plt.title('10点到12点每分钟的气温变化情况', fontproperties = my_font)
#网格
#alpha是透明度,0最透明,1最明显
plt.grid(alpha = 0.3) plt.plot(x, y)
plt.show()

3. 多个折线图
图例的位置loc:

from matplotlib import pyplot as plt, font_manager plt.figure(figsize=(20, 8), dpi=80)
x = range(11, 31)
y1 = [1,0,1,1,2,4,3,2,3,4,4,5,6,5,4,3,3,1,1,1]
y2 = [1,0,3,1,2,2,3,3,2,1,2,1,1,1,1,1,1,1,1,1] #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) plt.xticks(x, ['{}岁'.format(i) for i in list(x)], fontproperties = my_font)
plt.yticks([i / 2 for i in range(2 * min(y1), 2 * max(y1) + 1)]) #描述信息
plt.xlabel('年龄', fontproperties = my_font)
plt.ylabel('数量', fontproperties = my_font)
plt.title('统计个数', fontproperties = my_font, size = 18) #网格
#alpha是透明度
#linestyle -是实线 :是点虚线 --是线虚线 -.是点线虚线
plt.grid(alpha = 0.9, linestyle = ':') #两个都画
plt.plot(x, y1, label = '陈驰', color = 'red', linestyle = '--', linewidth = 3)
plt.plot(x, y2, label = '石泽涛', color = 'blue', linestyle = '-.', linewidth = 1) #添加图例
#这里显示中文需要注意一下
plt.legend(prop=my_font, loc=2) plt.show()

4. 散点图
from matplotlib import pyplot as plt, font_manager y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6] x_3 = range(1, 32)
x_10 = range(51, 82) plt.figure(figsize=(20, 8), dpi=80) #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) #画散点图
plt.scatter(x_3, y_3, label = '3月份')
plt.scatter(x_10, y_10, label = '10月份') _x = list(x_3) + list(x_10)
_xtick_labels = ['3月{}日'.format(i) for i in x_3]
_xtick_labels += ['10月{}日'.format(i - 50) for i in x_10] plt.xticks(_x[::3], _xtick_labels[::3], fontproperties = my_font, rotation = 45)
plt.yticks(range(min(y_3 + y_10), max(y_3 + y_10) + 1)) #添加图例
plt.legend(prop = my_font, loc = 2) #设置描述信息
plt.xlabel('时间', fontproperties = my_font)
plt.ylabel('温度(℃)', fontproperties = my_font)
plt.title('统计月份温度', fontproperties = my_font, size = 19) plt.grid(alpha = 0.4, linestyle = ':') plt.show()

5. 柱状图
from matplotlib import pyplot as plt, font_manager a = ["战狼2", "速度与激情8", "功夫瑜伽", "西游伏妖篇", "变形金刚5:最后的骑士", "摔跤吧!爸爸", "加勒比海盗5:死无对证", "金刚:骷髅岛", "极限特工:终极回归", "生化危机6:终章",
"乘风破浪", "神偷奶爸3", "智取威虎山", "大闹天竺", "金刚狼3:殊死一战", "蜘蛛侠:英雄归来", "悟空传", "银河护卫队2", "情圣", "新木乃伊", ] b = [56.01, 26.94, 17.53, 16.49, 15.45, 12.96, 11.8, 11.61, 11.28, 11.12, 10.49, 10.3, 8.75, 7.55, 7.32, 6.99, 6.88,
6.86, 6.58, 6.23] #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) plt.figure(figsize=(20, 8), dpi=80) plt.yticks(range(len(a)), a, fontproperties = my_font)
plt.xticks(list(range(int(min(b)), int(max(b)) + 1))[::2]) plt.ylabel('电影', fontproperties = my_font)
plt.xlabel('票房(亿元)', fontproperties = my_font)
plt.title('2017电影票房统计', fontproperties = my_font, size = 19) #width是条形图宽度
#bar是竖着的(width属性),barh是横着的(height属性)
plt.barh(range(len(a)), b, height = 0.3, color = 'orange') plt.grid(alpha = 0.3, linestyle = ':') plt.show()

6. 直方图
from matplotlib import pyplot as plt, font_manager #设置字体(这样可以显示中文字体)
my_font = font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc', size=12) a = ["猩球崛起3:终极之战","敦刻尔克","蜘蛛侠:英雄归来","战狼2"]
b_16 = [15746,312,4497,319]
b_15 = [12357,156,2045,168]
b_14 = [2358,399,2358,362] plt.figure(figsize=(20, 8), dpi=80) _x = list(range(len(a)))
_bar_width = 0.1 plt.xticks([i + _bar_width for i in _x], a, fontproperties = my_font) plt.xlabel('电影', fontproperties = my_font)
plt.ylabel('票房', fontproperties = my_font)
plt.title('不同天的电影票房', fontproperties = my_font, size = 20) plt.bar(_x, b_16, width = _bar_width, label = '9月16日')
plt.bar([i + _bar_width for i in _x], b_15, width = _bar_width, label = '9月15日')
plt.bar([i + _bar_width * 2 for i in _x], b_14, width = _bar_width, label = '9月14日') plt.legend(prop = my_font, loc = 0) plt.show()

要想进一步学习,参考:
https://matplotlib.org/gallery/index.html
或者选用:
[数据]matplotlib总结的更多相关文章
- 可视化数据matplotlib之安装与简单折线图
matplotlib是一个可视化数据的模块,安装前需要先安装Visual Studio Community:然后去https://pypi.python.org/pypi上查找matplotlib并下 ...
- python爬取旅游数据+matplotlib简单可视化
题目如下: 共由6个函数组成: 第一个函数爬取数据并转为DataFrame: 第二个函数爬取数据后存入Excel中,对于解题来说是多余的,仅当练手以及方便核对数据: 后面四个函数分别对应题目中的四个m ...
- python Matplotlib数据可视化神器安装与基本应用
Matplotlib Matplotlib 是一个非常强大的 Python 画图工具; 手中有很多数据, Matplotlib能帮你画出美丽的: 线图; 散点图; 等高线图; 条形图; 柱状图; 3D ...
- python实战学习之matplotlib绘图
matplotlib 是最流行的Python底层绘图库,主要做数据可视化图表 可以将数据可视化,能够更直观的呈现数据 matplotlib绘图基本要点 首先实现一个简单的绘图 # 导入pyplot f ...
- 无用之学matplotlib,numpy,pandas
一.matplotlib学习 matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建 例子1: # coding=utf- from ...
- matplotlib表面三维图
1.basic numpy.meshgrid 由一维数组到二维数组,用于生成网格数据 matplotlib python绘图库 2.code In [88]: from mpl_toolkits.mp ...
- 11-2 numpy/pandas/matplotlib模块
目录 numpy模块 一维数组 二维数组 列表list和numpy的区别 获取多维数组的行和列 多维数组的索引 高级功能 多维数组的合并 通过函数方法创建多维数组 矩阵的运算 求最大值最小值 nump ...
- day18-常用模块III (numpy、pandas、matplotlib)
目录 numpy模块 创建矩阵 获取矩阵的行列数 切割矩阵 矩阵元素替换 矩阵的合并 通过函数创建矩阵 矩阵的运算 矩阵的点乘与转置 矩阵的逆 矩阵的其他操作 numpy.random生成随机数 pa ...
- ApacheCN 数据科学译文集 20211109 更新ApacheCN 数据科学译文集 20211109 更新
计算与推断思维 一.数据科学 二.因果和实验 三.Python 编程 四.数据类型 五.表格 六.可视化 七.函数和表格 八.随机性 九.经验分布 十.假设检验 十一.估计 十二.为什么均值重要 十三 ...
随机推荐
- 3d模型 手办制作 3d model manual production
3d模型 手办制作 3d model manual production 作者:韩梦飞沙 Author:han_meng_fei_sha 邮箱:313134555@qq.com E-mail: 313 ...
- 9、SQL逻辑查询语句执行顺序
本篇导航: SELECT语句关键字的定义顺序 SELECT语句关键字的执行顺序 准备表和数据 准备SQL逻辑查询测试语句 执行顺序分析 一.SELECT语句关键字的定义顺序 SELECT DISTIN ...
- CentOS 7卸载Docker
1.先查询所有安装的包 yum list installed | grep docker*或者rpm -qa docker* 2.删除查询出来的包 # 一般情况会有一个 yum remove -y d ...
- .net core 3.0中可以使用gRPC了
今天发现.net core下有gRPC模板了,这个可是补全了.net core下高性能RPC框架缺失这一大短板了. 使用模板创建了工程后,发现连客户端的示例也创建了. 更加给力的是,IDE是能直接识别 ...
- PPPOE
本质上,它是一个允许在以太网广播域中的两个以太网接口间创建点对点隧道的协议. PPPoE(英语:Point-to-Point Protocol Over Ethernet),以太网上的点对点协议,是将 ...
- Linux C Socket TCP编程介绍及实例
转自:https://blog.csdn.net/lell3538/article/details/53335231 { printf("向服务器发送数据:%s\n",sendbu ...
- VS2010链接TFS遇见错误:TF204017,没有访问工作区域,需要一个或者多个必须权限
最近刚刚搭建好服务器,然后准备将VSS源代码迁移到TFS源代码管理服务器上面.在我本机先用的服务器帐号来上传初始化源代码数据库,然后我又用自己的帐号进行迁出代码的时候发生的异常. 造成上述错误,主要是 ...
- 解决无法安装Flash Player的问题
1.同时搜索几个关键词:关键词用空格分开,例如:“中国 历史”会搜索显示同时包含中国.历史两个词的网页 2.排除某个关键词:被排除的词前面加上-号,例如“中国 历史 -清朝”会把有清朝两个字的网页过滤 ...
- IIS服务命令
: iisreset /reboot 重启win2k计算机(但有提示系统将重启信息出现) iisreset /start或stop 启动(停止)所有Internet服务 iisreset /resta ...
- android:如何通过自定义工程模板让新建的工程都默认支持lambda表达式
首先参考这篇文章:自定义Android Studio工程模板,了解如何自定义模板 然后结合我们上一篇文章 android: 在android studio中使用retrolambda的步骤的要点, ...