LOJ 2737 「JOISC 2016 Day 3」电报 ——思路+基环树DP
题目:https://loj.ac/problem/2737
相连的关系形成若干环 / 内向基环树 。如果不是只有一个环的话,就得断开一些边使得图变成若干链。边的边权是以它为出边的点的点权。
基环树的树的部分可以 DP 或者贪心,贪心就是只在分叉处断边。
对于每个环,先做出 f[ i ][ 0/1 ] 表示环上这个点 不向下 / 向下 延伸链的代价,然后在环上 DP 。
方法就是先指定 tot -> 1 的边不选, DP 一番,再制定 tot -> 1 的边选, DP 一番。
如果指定 tot -> 1 的边选,要注意不能连出一个环。所以不仅有 g[ i ][ 0/1 ] 表示 “可以向右延伸” / “无要求” , 还要有一个 [ 0/1 ] 表示 “之前有没有断过” 。不过不用有 g[ i ][ 1 ][ 1 ] ,因为 “无要求” 就是表示 i -> i+1 得断开,这样就一定 “断过” 了;所以就记 g[ i ][ 2 ] 表示 “之前断过,现在可以向右延伸” 。 g[ tot ][ 2 ] 就是指定 tot -> 1 的边选的时候加给答案的贡献。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int rdn()
{
int ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
ll Mn(ll a,ll b){return a<b?a:b;}
ll Mx(ll a,ll b){return a>b?a:b;}
const int N=1e5+; const ll INF=1e14+;
int n,hd[N],xnt,to[N<<],nxt[N<<],w[N<<],tp[N],tw[N],tot;
int cd[N],cnt,col[N],tim,dfn[N],low[N],sta[N],top;
ll ans,f[N][],g[N][]; bool vis[N],ins[N];
void add(int x,int y,int z)
{
to[++xnt]=y;nxt[xnt]=hd[x];hd[x]=xnt;w[xnt]=z;cd[x]++;
}
void tarjan(int cr)
{
dfn[cr]=low[cr]=++tim; sta[++top]=cr; ins[cr]=;
for(int i=hd[cr],v;i;i=nxt[i])
if(!dfn[v=to[i]])tarjan(v),low[cr]=Mn(low[cr],low[v]);
else if(ins[v])low[cr]=Mn(low[cr],dfn[v]);
if(dfn[cr]==low[cr])
{
cnt++; int siz=;
do{
ins[sta[top]]=; col[sta[top]]=cnt; siz++;
}while(sta[top--]!=cr);
if(siz==)col[cr]=, cnt--;
}
}
void dfs(int cr)
{
ins[cr]=;
for(int i=hd[cr],v;i;i=nxt[i])
if(!col[v=to[i]])
{
dfs(v=to[i]);
ll t0=f[cr][]+f[v][]+w[i];
ll t1=Mn(f[cr][]+f[v][],f[cr][]+f[v][]+w[i]);
f[cr][]=t0; f[cr][]=t1;
}
}
void ini_dfs(int cr,int st)
{
dfs(cr); tp[++tot]=cr;
for(int i=hd[cr],v;i;i=nxt[i])
if(col[v=to[i]])
{tw[tot]=w[i]; if(v!=st)ini_dfs(v,st);}
}
void solve(int cr)
{
tot=; ini_dfs(cr,cr);
g[][]=tw[tot]+f[tp[]][]; g[][]=tw[tot]+f[tp[]][];//f[tp[]]!!
for(int i=;i<=tot;i++)
{
int cr=tp[i];//
g[i][]=Mn(g[i-][],g[i-][]+tw[i-])+f[cr][];
g[i][]=Mn(g[i-][],g[i-][]+tw[i-])+f[cr][];
}
ll ret=g[tot][];
g[][]=f[tp[]][]; g[][]=f[tp[]][]; g[][]=g[][]=INF;
for(int i=;i<=tot;i++)
{
int cr=tp[i];
g[i][]=Mn(g[i-][],g[i-][]+tw[i-])+f[cr][];
g[i][]=Mn(g[i-][],g[i-][]+tw[i-])+f[cr][];
g[i][]=Mn(g[i-][],g[i-][]+tw[i-])+f[cr][];
}
ans+=Mn(ret,g[tot][]);
}
int main()
{
n=rdn();
for(int i=,d,z;i<=n;i++)
{ d=rdn(); z=rdn(); add(d,i,z);}
bool fg=;for(int i=;i<=n;i++)if(cd[i]!=){fg=;break;}
if(!fg)
{
int cr=;while(!vis[cr]){vis[cr]=;cr=to[hd[cr]];}
for(int i=;i<=n;i++)if(!vis[i]){fg=;break;}
if(!fg){puts("");return ;}
}
for(int i=;i<=n;i++)if(!dfn[i])tarjan(i);
for(int i=;i<=n;i++)
if(!ins[i]&&col[i])solve(i);
printf("%lld\n",ans); return ;
}
LOJ 2737 「JOISC 2016 Day 3」电报 ——思路+基环树DP的更多相关文章
- Loj #2731 「JOISC 2016 Day 1」棋盘游戏
Loj 2731 「JOISC 2016 Day 1」棋盘游戏 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少 ...
- LOJ 2736 「JOISC 2016 Day 3」回转寿司 ——堆+分块思路
题目:https://loj.ac/problem/2736 如果每个询问都是 l = 1 , r = n ,那么每次输出序列的 n 个数与本次操作的数的最大值即可.可以用堆维护. 不同区间的询问,可 ...
- LOJ #2731. 「JOISC 2016 Day 1」棋盘游戏(dp)
题意 JOI 君有一个棋盘,棋盘上有 \(N\) 行 \(3\) 列 的格子.JOI 君有若干棋子,并想用它们来玩一个游戏.初始状态棋盘上至少有一个棋子,也至少有一个空位. 游戏的目标是:在还没有放棋 ...
- [LOJ#2732] 「JOISC 2016 Day 2」雇佣计划
参考博文 (不过个人感觉我讲的稍微更清楚一点) 题目就是让我们求图中满足数值大于等于B的连通块数量 然后我们可以尝试转换为求连通块两端所产生的“谷”的数量,显然一个连通块对谷可以贡献2的答案,最终答案 ...
- LOJ #2831. 「JOISC 2018 Day 1」道路建设 线段树+Link-cut-tree
用 LCT 维护颜色相同连通块,然后在线段树上查一下逆序对个数就可以了. code: #include <cstdio> #include <algorithm> #inclu ...
- 题解 「JOISC 2016 Day 3」电报
题目传送门 题目大意 给出一个\(n\)个点\(n\)条边的图,每个点有且仅有一个出边,改变每条边都会有对应的花费.求最小的花费使得整个图强连通. 思路 很显然,最后的图就是一个环.那我们要求的答案实 ...
- 「JOISC 2016 Day 1」棋盘游戏
「JOISC 2016 Day 1」棋盘游戏 先判无解:第1,3行有连续的空格或四个角有空格. 然后可以发现有解的情况第1,3行可以在任意时间摆放. 对于某一列,若第2行放有棋子,那么显然可以把棋盘分 ...
- loj 2392「JOISC 2017 Day 1」烟花棒
loj 答案显然满足二分性,先二分一个速度\(v\) 然后显然所有没有点火的都会往中间点火的人方向走,并且如果两个人相遇不会马上点火,要等到火快熄灭的时候才点火,所以这两个人之后应该在一起行动.另外有 ...
- 「JOISC 2016 Day 3」回转寿司
https://loj.ac/problem/2736 题解 挺有意思的题. 考虑这种操作不好直接维护,还有时限比较长,所以考虑分块. 考虑一个操作对整个块的影响,无非就是可能把最大的拿走,再把新的元 ...
随机推荐
- 爬虫框架存储pymysql方式
爬虫框架存储pymysql方式# -*- coding: utf-8 -*-import pymysql# Define your item pipelines here## Don't forget ...
- wx小程序使用模板消息
1.直接搜索一个不存在的模板,则可以添加新模板 2.https://developers.weixin.qq.com/miniprogram/dev/api/notice.html#%E5%8F%91 ...
- HDU 1166 敌兵布阵(线段树点更新区间求和裸题)
Problem Description C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了.A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任 ...
- MyBatis insert操作返回主键
在使用MyBatis做持久层时,insert语句默认是不返回记录的主键值,而是返回插入的记录条数: Dao.java @Override public int insert(T record) { f ...
- Spring Boot 揭秘与实战(三) 日志框架篇 - 如何快速集成日志系统
文章目录 1. 默认的日志框架 logback2. 常用的日志框架 log4j 1.1. 日志级别 1.2. 日志文件 3. 源代码 Java 有很多日志系统,例如,Java Util Logging ...
- [转]Skynet之斗转星移 - 将控制权交给Lua
Skynet之斗转星移 - 将控制权交给Lua http://www.outsky.org/code/skynet-lua.html Sep 7, 2014 在我看来,Skynet的一个重要优势是 ...
- Win2003可用序列号(标准版与企业版)
通用性好的win2003序列号: (推荐先用这个里面的)FJ8DH-TQPYG-9KFHQ-88CB2-Y7V3Y GRD4P-FTQQF-JCDM8-4P6JK-PFG7M JD7JX-KCDTH- ...
- awr脚本使用dump导出导入
实际工作中,存在这么一种场景.客户现场分析问题,无法立即得出结论,且无法远程服务器,因此对于服务器中的awr信息,如何提取是一个问题,oracle有脚本可以对服务器中以db为单位导出awr基表的dum ...
- SpringBoot 配置文件详解
springboot采纳了建立生产就绪spring应用程序的观点. Spring Boot优先于配置的惯例,旨在让您尽快启动和运行.在一般情况下,我们不需要做太多的配置就能够让spring boot正 ...
- nmon使用命令
nmon使用命令 启动nmon后, c 查看CPU监控的窗口 mV 查看内存和虚拟内存 V是大写 ndt 查看网络.磁盘和虚拟进程 q ...