[SDOI2016]征途

大体

大概就是推推公式,发现很傻逼的\(n^3\)DP

get60

进一步我们发现状态不能入手,考虑优化转移

套个斜率优化板子

每一层转移来一次斜率优化

思路

先便便式子

\[s^2=m^{2}*\frac{\sum_{1}^{m}(a_{i}-\overline{a})^2}{m}
\]

\[=m*\sum_{1}^{m}(a_{i}-\overline{a})^2
\]

\[=m*\sum_{1}^{m}(a_{i}^2-2*a_{i}*\overline{a}+\overline{a}^2)
\]

\[=m*\sum_{1}^{m}a_{i}^2-m*\sum_{1}^{m}2*a_{i}*\overline{a}+m*\sum_{1}^{m}\overline{a}^2
\]

\[=m*\sum_{1}^{m}a_{i}^2-m*\sum_{1}^{m}2*a_{i}*\overline{a}+m*\sum_{1}^{m}\overline{a}^2
\]

\[\overline{a}^2=\frac{\sum_{1}^{m}a_{i}}{m}
\]

\[=m*\sum_{1}^{m}a_{i}^2-m*\sum_{1}^{m}2*a_{i}*\frac{\sum_{1}^{m}a_{i}}{m}+m*\sum_{1}^{m}(\frac{\sum_{1}^{m}a_{i}}{m})^2
\]

额,多化简化简,就得到了,LaTeX太麻烦了,这里就不多打了

\[=m*\sum_{1}^{m}a_{i}^2-2*(\sum_{1}^{m}a_{i})^2+\sum_{1}^{m}\frac{(\sum_{1}^{m}a_{i})^2}{m}
\]

\[=m*\sum_{1}^{m}a_{i}^2-2*(\sum_{1}^{m}a_{i})^2+(\sum_{1}^{m}a_{i})^2
\]

\[=m*\sum_{1}^{m}a_{i}^2-(\sum_{1}^{m}a_{i})^2
\]

注意:\(\sum_{1}^{m}a_{i}^2\)和\(2*(\sum_{1}^{m}a_{i})^2\)并不相同

然后我们发现\(2*(\sum_{1}^{m}a_{i})^2\)是个定值

我们只需要求\(\sum_{1}^{m}a_{i}^2\)这个最小就好了(m>0不用考虑)

然后我们可以\(f[i][j]\)表示选了\(i\)次,到了第\(j\)个点的最小和(入门dp,无脑状态)

状态转移方程:

\[f[i][j]=min(f[i][j],f[i-1][k]+(sum[j]-sum[k])*(sum[j]-sum[k]))
\]

然后我们可以这个样纸

FOR(i,1,n) //选的第几次点
FOR(j,1,n) //位置
FOR(k,0,j) //由前面转移
f[i][j]=min(f[i][j],f[i-1][k]+(sum[j]-sum[k])*(sum[j]-sum[k]));

我们发现状态是\(n^2\)个,每次转移是O(n)的,太墨迹了

那就套个斜率板子加个速,n次斜率转移

每一层都是由上一层转移,也可以滚动数组省内存一下,我看着128MB有点小

暴力60

/*
此题推出式子来就好办了,n^3dp直接斜率优化成n^2
次代码为本体暴力
*/
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll N=1e6+7;
ll read() {
ll x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
ll n,m,sum[N];
ll f[3007][3007];
int main() {
n=read(),m=read();
for(int i=1;i<=n;++i) {
int x=read();
sum[i]=sum[i-1]+x;
}
memset(f,0x3f,sizeof(f));
for(int i=0;i<=n;++i) f[1][i]=sum[i]*sum[i];
for(int i=2;i<=m;++i) {
f[i][0]=0;
for(int j=1;j<=n;++j) {
for(int k=0;k<=j;++k) {
f[i][j]=min(f[i][j],f[i-1][k]+(sum[j]-sum[k])*(sum[j]-sum[k]));
}
}
}
cout<<m*f[m][n]-sum[n]*sum[n]<<"\n";
return 0;
}

AC代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll N=3007;
ll read() {
ll x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
ll n,m,sum[N],f[N][N],q[N];
double calc(ll j,ll k,ll x) {
ll xx=sum[j];
ll yy=f[x-1][j]+sum[j]*sum[j];
ll xx_=sum[k];
ll yy_=f[x-1][k]+sum[k]*sum[k];
return (yy-yy_)/(2.0*(xx-xx_));
}
void work(int x) {
int h=0,d=0;
for(int i=1;i<=n;++i){
while(h<d && calc(q[h],q[h+1],x) <= sum[i]) h++;
f[x][i]=f[x-1][q[h]]+(sum[i]-sum[q[h]])*(sum[i]-sum[q[h]]);
while(h<d && calc(q[d],q[d-1],x) >= calc(q[d],i,x)) d--;
q[++d]=i;
}
}
int main() {
n=read(),m=read();
for(int i=1;i<=n;++i) {
int x=read();
sum[i]=sum[i-1]+x;
}
memset(f,0x3f,sizeof(f));
for(int i=0;i<=n;++i) f[1][i]=sum[i]*sum[i];
for(int i=2;i<=m;++i) {
f[i][0]=0;
work(i);
}
cout<<m*f[m][n]-sum[n]*sum[n]<<"\n";
return 0;
}

wxy刷noi,而我等蒟蒻只能刷省选

luoguP4072 [SDOI2016]征途的更多相关文章

  1. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  2. 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 532  Solved: 337[Submit][Status][ ...

  3. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  4. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  5. BZOJ_4518_[Sdoi2016]征途_斜率优化

    BZOJ_4518_[Sdoi2016]征途_斜率优化 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到 ...

  6. 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途

    斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ;   1<=j<i (O(n^2)暴力)这样一个式子,首 ...

  7. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  8. BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *

    BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...

  9. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

随机推荐

  1. C# Mongo Client 2.4.2判断是否存在表

    public async Task<bool> CollectionExistsAsync(string collectionName) { var filter = new BsonDo ...

  2. caffe神经网络中不同的lr_policy间的区别

    lr_policy可以设置为下面这些值,相应的学习率的计算为: - fixed:  保持base_lr不变. - step:  如果设置为step,则还需要设置一个stepsize,  返回 base ...

  3. MindMaster学习笔记

    参考博客 http://blog.sina.com.cn/u/6406591976 作者名叫“MindMaster思维导图的博客 ”写了一系列关于思维导图的博客,可以去学习下. 1.其中有一篇比较详细 ...

  4. word之论文摘要

    字数在500个汉字左右

  5. 事件响应模型(游戏引擎、JAVA中等应用)

    事件,我们在生活中时时在产生事件并且做出响应,如早晨出门时,看见外面下雨了,这时候我们需要带把伞等情况! 在现实生活之中事件分为人为事件和自然事件,那么在计算机操作系统中也不例外,存在两种事件 1.人 ...

  6. [16]Windows内核情景分析 --- 服务管理

    随时可以看到任务管理器中有一个services.exe进程,这个就是系统的服务控制管理进程,简称SCM 这个进程专门用来管理服务(启动.停止.删除.配置等操作) 系统中所有注册的服务都登记在\HKEY ...

  7. HTML5特性&&canvas

    1.HTML5是由W3C(万维网联盟,专注于XHTML 2.0)和WHATWG(专注于web表单和应用程序)共同合作的结果,2014年10月完成标准制定! 主要设计目的:为了在移动设备上支持多媒体. ...

  8. 20155228 实验二 Java面向对象程序设计

    20155228 实验二 Java面向对象程序设计 实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. 熟悉S.O.L.I.D原 ...

  9. 【2017-2-26】C#String类、Math类、DateTime类

    String类 黑色小扳手:属性      后面不带括号 紫色小箱子:方法      后面带小括号 1.字符串.Length;   字符串长度,返回int类型 字符串的长度 2.字符串.TrimSta ...

  10. 【Redis学习之八】Redis集群:主从复制

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 redis-2.8.18 Redis集群分类: 主从复制 R ...