旅行商问题(TSP)、最长路径问题与哈密尔顿回路之间的联系(归约)
一,旅行商问题与H回路的联系(H回路 定义为 哈密尔顿回路)
旅行商问题是希望售货员恰好访问每个城市一次,最终回到起始城市所用的费用最低,也即判断图中是否存在一个费用至多为K的回路。(K相当于图中顶点的个数)
由于售货员可以从某个城市到其他任何一个城市。因此,该问题对应的是一个完全图(设为G′)。而关于判断哈密尔顿回路的图(设为G)并不一定为完全图,因此,在将哈密尔顿回路问题归约到旅行商问题时,定义一个费用函数(详情参考《算法导论第二版中文版》第626页。
通过这个费用函数,将判断G′是否存在一个费用至多为K的路径转化为G中是否有哈密尔顿回路。
二,最长路径问题与H回路的联系
图的最长路径:若一条路径包含了图中所有的顶点且各个顶点只包含一次,那么它就是一条最长路径。(如果有回路或圈则某个顶点一定会出现在路径中出现了两次)
哈密尔顿回路问题对应的图为G,最长路径问题对应的图为G′,那么将哈密尔顿回路问题归约到最长路径问题,实质上是已经G具有H回路(H圈),如何判断G′具有H路?
如何根据实际要证明的已知的最长路径问题建模而成的G′,构造出G呢?-----在G′的基础上增加一个顶点V,并将G′中各个点与V连一条边,形成的图即G。
若G中存在H圈则G′中存在H路。
理论证明参考《图论》中的度序列定理。
旅行商问题(TSP)、最长路径问题与哈密尔顿回路之间的联系(归约)的更多相关文章
- 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)
喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...
- ubuntu 终端设置(颜色与长路径)
Linux给人最大的享受就是可以根据个人喜好去定制令自己舒服的系统配置,像终端颜色的设置就是一个典型的例子. 图1 系统默认状态下的终端显示 在没有经过自定义配置的终端下工作久了,难免容易疲劳 ...
- Codefroces Gym 100781A(树上最长路径)
http://codeforces.com/gym/100781/attachments 题意:有N个点,M条边,问对两两之间的树添加一条边之后,让整棵大树最远的点对之间的距离最近,问这个最近距离是多 ...
- 【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)
Walking Race Description flymouse's sister wc is very capable at sports and her favorite event is ...
- hdoj 2196 Computer【树的直径求所有的以任意节点为起点的一个最长路径】
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- AOE网上的关键路径(最长路径 + 打印路径)
题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图. AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG ...
- POJ 1797 Heavy Transportation(Dijkstra变形——最长路径最小权值)
题目链接: http://poj.org/problem?id=1797 Background Hugo Heavy is happy. After the breakdown of the Carg ...
- Going from u to v or from v to u? POJ - 2762(强连通 有向最长路径)
In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, an ...
- HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)
HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...
随机推荐
- U 盘安装 CentOS的方法
1. 刻录U盘 我使用的工具是 UltralISO 2. 打开ISO 3. 使用<启动>-<写入磁盘映像> 根据U盘的性能 可能好事 5min-15min左右 4.找到想要安装 ...
- ubuntu ftp服务
apt-get install vsftpd apt-get update vi /etc/apt/sources.list vim /etc/vsftpd.conf service vsftpd ...
- SAP字体调节大小
登陆SAP 之后,菜单下面一行,最右边的那个彩色按钮(SAP GUI),点击“选项”-可视设计-字体设计-固定狂赌字体设计,点击:选择字体 即可.
- __slots__用法以及优化
其实也是无意之中又看到这个东西,这次索性再记一下,免得下次忘记又再看一遍,往复循环浪费了太多时间. __slots__其实我做项目这么久还没有主动使用过.下面reference有提到这么一句话 War ...
- python threading模块使用 以及python多线程操作的实践(使用Queue队列模块)
今天花了近乎一天的时间研究python关于多线程的问题,查看了大量源码 自己也实践了一个生产消费者模型,所以把一天的收获总结一下. 由于GIL(Global Interpreter Lock)锁的关系 ...
- WINFORM 多条件动态查询 通用代码的设计与实现
经常碰到多条件联合查询的问题,以前的习惯认为很简单总会从头开始设计布局代码,往往一个查询面要费上老半天的功夫,而效果也不咋地. 前段时间做了个相对通用的多条件动态查询面,复用起来还是挺方便的, ...
- delphi DBGRID 刷新定位问题 [问题点数:0分]
我程序是 adoquery+datasource+dbgrid 做的我有一个窗体:有四个按钮.分别是新建,修改,删除,刷新. 新建第一条记录,dbgrid显示一条记录,新建第二条记录.DBGRID总共 ...
- Java之使用HttpClient发送GET请求
package LoadRunner; import org.apache.http.HttpEntity; import org.apache.http.HttpResponse; import o ...
- 利用caffe自带的Makefile编译自定义so文件
1.文件目录结构 caffe-root |--include |--example |--modules |--test.h |--test.cpp |--python |--src |--tools ...
- LOJ116 有源汇有上下界最大流(上下界网络流)
考虑有源汇上下界可行流:由汇向源连inf边,那么变成无源汇图,按上题做法跑出可行流.此时该inf边的流量即为原图中该可行流的流量.因为可以假装把加上去的那些边的流量放回原图. 此时再从原来的源向原来的 ...