旅行商问题(TSP)、最长路径问题与哈密尔顿回路之间的联系(归约)
一,旅行商问题与H回路的联系(H回路 定义为 哈密尔顿回路)
旅行商问题是希望售货员恰好访问每个城市一次,最终回到起始城市所用的费用最低,也即判断图中是否存在一个费用至多为K的回路。(K相当于图中顶点的个数)
由于售货员可以从某个城市到其他任何一个城市。因此,该问题对应的是一个完全图(设为G′)。而关于判断哈密尔顿回路的图(设为G)并不一定为完全图,因此,在将哈密尔顿回路问题归约到旅行商问题时,定义一个费用函数(详情参考《算法导论第二版中文版》第626页。
通过这个费用函数,将判断G′是否存在一个费用至多为K的路径转化为G中是否有哈密尔顿回路。
二,最长路径问题与H回路的联系
图的最长路径:若一条路径包含了图中所有的顶点且各个顶点只包含一次,那么它就是一条最长路径。(如果有回路或圈则某个顶点一定会出现在路径中出现了两次)
哈密尔顿回路问题对应的图为G,最长路径问题对应的图为G′,那么将哈密尔顿回路问题归约到最长路径问题,实质上是已经G具有H回路(H圈),如何判断G′具有H路?
如何根据实际要证明的已知的最长路径问题建模而成的G′,构造出G呢?-----在G′的基础上增加一个顶点V,并将G′中各个点与V连一条边,形成的图即G。
若G中存在H圈则G′中存在H路。
理论证明参考《图论》中的度序列定理。
旅行商问题(TSP)、最长路径问题与哈密尔顿回路之间的联系(归约)的更多相关文章
- 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)
喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...
- ubuntu 终端设置(颜色与长路径)
Linux给人最大的享受就是可以根据个人喜好去定制令自己舒服的系统配置,像终端颜色的设置就是一个典型的例子. 图1 系统默认状态下的终端显示 在没有经过自定义配置的终端下工作久了,难免容易疲劳 ...
- Codefroces Gym 100781A(树上最长路径)
http://codeforces.com/gym/100781/attachments 题意:有N个点,M条边,问对两两之间的树添加一条边之后,让整棵大树最远的点对之间的距离最近,问这个最近距离是多 ...
- 【POJ 3162】 Walking Race (树形DP-求树上最长路径问题,+单调队列)
Walking Race Description flymouse's sister wc is very capable at sports and her favorite event is ...
- hdoj 2196 Computer【树的直径求所有的以任意节点为起点的一个最长路径】
Computer Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- AOE网上的关键路径(最长路径 + 打印路径)
题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图. AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG ...
- POJ 1797 Heavy Transportation(Dijkstra变形——最长路径最小权值)
题目链接: http://poj.org/problem?id=1797 Background Hugo Heavy is happy. After the breakdown of the Carg ...
- Going from u to v or from v to u? POJ - 2762(强连通 有向最长路径)
In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has n rooms, an ...
- HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)
HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...
随机推荐
- Oracle ORDS的简单SQL配置模板
1. 先加上简单的SQL配置模板. DECLARE PRAGMA AUTONOMOUS_TRANSACTION; BEGIN ORDS.ENABLE_SCHEMA(p_enabled => TR ...
- laravel5 报错419,form 添加crrf_field 后让然失败,本地环境配置问题
这个是因为laravel自带CSRF验证的问题 解决方法 方法一:去关掉laravel的csrf验证,但这个人不建议,方法也不写出来了. 方法二:把该接口写到api.php上就好了 方法三: 首先在页 ...
- 数据类型+内置方法 python学习第六天
元组 用途:不可变的列表,能存多个值,但多个值只有取的需求而没有改的需求. 定义方式:在()内用逗号分隔开多个元素,可以存放任意类型的值. names=(‘alex’,’blex’,’clex’) 强 ...
- BZOJ2277[Poi2011]Strongbox——数论
题目描述 Byteasar is a famous safe-cracker, who renounced his criminal activity and got into testing and ...
- Educational Codeforces Round 58 Div. 2 自闭记
明明多个几秒就能场上AK了.自闭. A:签到. #include<iostream> #include<cstdio> #include<cmath> #inclu ...
- vmware错误汇总
[问题来源] 因为虚拟机过大,所以直接在本地磁盘直接复制,启动的时候,换好IP重新启动网卡报错. device eth0 does not seem to be present.. ifconfig查 ...
- day22 time模块
表示方式有三种 时间戳 给机器看的 float格式 格式化的字符传 给人看的 格式化时间 元祖 计算用的 结构化时间 1 # 时间戳时间 2 # 返回一个时间戳,表示从1970.1.1日到现在的秒数 ...
- MT【8】和e有关的一个极限
解答: 评:这里涉及到e有关的极限的单调性,求导数得:
- 自学Zabbix7.1 IT services
自学Zabbix7.1 IT services 1. 概念IT Services 服务器或者某项服务.业务的可用率,不懂技术的上级领导会过问最近服务器可用率如何.所有api的状况怎么样?通常一些技术人 ...
- k8s常用命令
K8s一些命令:通过yaml文件创建:kubectl create -f xxx.yaml (不建议使用,无法更新,必须先delete)kubectl apply -f xxx.yaml (创建+更新 ...