CF1076D Edge Deletion 最短路树
问题描述
题解
最短路树,是一棵在最短路过程中构建的树。
在\(\mathrm{Dijkstra}\)过程中,如果最终点\(y\)是由点\(x\)转移得到的,则在最短路树上\(x\)是\(y\)的父节点,\(x\)到\(y\)的最短路树上长度等于原图上转移\(x,y\)的边的长度。
显然每一条边最多能贡献\(1\)的答案。
在最短路树上选取边,能保证每一条边都贡献答案。
选取的边连接的点和根结点\(1\)要是联通块。
\(\mathrm{Code}\)
#include<bits/stdc++.h>
using namespace std;
#define int long long
//三年OI一场空,不开long long见祖宗
template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-'){
fh=-1;ch=getchar();
}
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
}
const int maxn=300000+7;
const int maxm=600000+7;
int Head[maxn],to[maxm],Next[maxm],tot=1,w[maxm];
int n,m,k;
int dis[maxn];
void add(int x,int y,int z){
to[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
}
struct node{
int dis,id;
bool operator <(const node &a)const
{
return dis>a.dis;
}
};
bool vis[maxn];
void dijkstra(int st){
memset(dis,0x3f,sizeof(dis));
dis[st]=0;priority_queue<node>q;
q.push((node){0,st});
while(!q.empty()){
int x=q.top().id;q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=Head[x];i;i=Next[i]){
int y=to[i];
if(dis[y]>dis[x]+w[i]){
dis[y]=dis[x]+w[i];q.push((node){dis[y],y});
}
}
}
}
bool ins[maxn];
void dfs(int x){
ins[x]=1;
for(int i=Head[x];i;i=Next[i]){
int y=to[i];
if(!ins[y]&&dis[y]==dis[x]+w[i]){
printf("%I64d ",(i>>1));
--k;if(!k) exit(0);
dfs(y);
}
}
}
signed main(){
read(n);read(m);read(k);
printf("%I64d\n",min(n-1,k));
if(!k) return 0;
for(int xx,yy,zz,i=1;i<=m;i++){
read(xx);read(yy);read(zz);add(xx,yy,zz);add(yy,xx,zz);
}
dijkstra(1);dfs(1);
return 0;
}
CF1076D Edge Deletion 最短路树的更多相关文章
- CF1076D Edge Deletion
洛谷传送门 cf传送门 这道题作为div.2的D题,被我一眼秒了我觉得十分荣幸,然后就开始写,然后就写了好久. AC之后看网上的题解,发现好多最短路树的,猛然发现我写的好复杂啊,结果还看到了直接一遍d ...
- CF1076D Edge Deletion 最短路径树+bfs
题目描述 You are given an undirected connected weighted graph consisting of n n n vertices and m m m edg ...
- Codeforces 1076D Edge Deletion(最短路树)
题目链接:Edge Deletion 题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多.输出m ...
- hdu 3409 最短路树+树形dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3409 参考博客:http://www.cnblogs.com/woaishizhan/p/318981 ...
- LA4080/UVa1416 Warfare And Logistics 最短路树
题目大意: 求图中两两点对最短距离之和 允许你删除一条边,让你最大化删除这个边之后的图中两两点对最短距离之和. 暴力:每次枚举删除哪条边,以每个点为源点做一次最短路,复杂度\(O(NM^2logN)\ ...
- 51nod 1443 路径和树(最短路树)
题目链接:路径和树 题意:给定无向带权连通图,求从u开始边权和最小的最短路树,输出最小边权和. 题解:构造出最短路树,把存留下来的边权全部加起来.(跑dijkstra的时候松弛加上$ < $变成 ...
- Connections between cities HDU - 2874(最短路树 lca )
题意: 给出n个点m条边的图,c次询问 求询问中两个点间的最短距离. 解析: Floyd会T,所以用到了最短路树..具体思想为: 设k为u和v的最近公共祖先 d[i] 为祖结点到i的最短距离 则di ...
- 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)
layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...
- CF1005F Berland and the Shortest Paths (树上构造最短路树)
题目大意:给你一个边权为$1$的无向图,构造出所有$1$为根的最短路树并输出 性质:单源最短路树上每个点到根的路径 ,一定是这个点到根的最短路之一 边权为$1$,$bfs$出单源最短路,然后构建最短路 ...
随机推荐
- 使用Python拆分数据量大的CSV文件(亲测有效)
转载:https://www.cnblogs.com/FYZHANG/p/11629075.html 一次就运行成功了,感谢博主分享 #!/usr/bin/env python3 # -*- # @F ...
- CF1178 F1 Short Colorful Strip
题目链接 题意 有个长度为\(m\)公分的布,要在上面每公分都染上颜色,整块布染恰好\(n(n=m)\)种颜色.颜色标号从\(1\)到\(n\).染色需遵循: 1.从颜色\(1\)到颜色\(n\)依次 ...
- UAC简介
用户帐户控制 (User Account Control) 是Windows Vista(及更高版本操作系统)中一组新的基础结构技术,可以帮助阻止恶意程序(有时也称为“恶意软件”)损坏系统,同时也可以 ...
- dirb参数解析
-----------------DIRB v2.22 By The Dark Raver----------------- dirb <url_base> [<wordlist_f ...
- 我是如何理解并使用maven的
前言 一直想写一篇关于Maven的文章,但是不知如何下笔,如果说能使用,会使用Maven的话,一.两个小时足矣,不需要搞懂各种概念.那么给大家来分享下我是如何理解并使用maven的. 什么是Maven ...
- Shell基本运算符之字符串运算符
Shell基本运算符 1.字符串运算符 常用的字符串运算符 运算符 说明 例子 = 检测两字符串是否相等,相等返回true [ $a = $b ] != 检测两个字符串是否部相等,不相等返回true ...
- layui 数据表格里面的html代码转义
table.render({ elem: '#release_table' ,url:'data_list' ,where: {table: 'release'} //两步转义转义,先将原始数据 ...
- IDEA快速修复错误快捷键
有的时候在IDEA中编写代码,会出现错误提示,比如需要处理异常 将光标移动到出错,也就是划红线的地方,行首会出现一个小灯泡,点击会出现图二,可以按照提示进行修复
- AngleSharp 实战(05)之遍历内部子元素(x)元素,尝试着获取元素的 Attr 和 InnerText
直接贴代码了: using System; using System.Linq; using System.Threading.Tasks; using AngleSharp; using Angle ...
- 修改linux内核加载顺序
修改内核启动顺序:1.查看当前系统所有的内核# awk -F\' '$1=="menuentry " {print i++ " : " $2}' /etc/gr ...