Given an unsorted array of integers, find the number of longest increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].

Example 2:

Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.

Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.

这道题给了我们一个数组,让求最长递增序列的个数,题目中的两个例子也很好的说明了问题。那么对于这种求极值的问题,直觉告诉我们应该要使用动态规划 Dynamic Programming 来做。其实这道题在设计 DP 数组的时候有个坑,如果将 dp[i] 定义为到i位置的最长子序列的个数的话,则递推公式不好找。但是如果将 dp[i] 定义为以 nums[i] 为结尾的递推序列的个数的话,再配上这些递推序列的长度,将会比较容易的发现递推关系。这里用 len[i] 表示以 nums[i] 为结尾的递推序列的长度,用 cnt[i] 表示以 nums[i] 为结尾的递推序列的个数,初始化都赋值为1,只要有数字,那么至少都是1。然后遍历数组,对于每个遍历到的数字 nums[i],再遍历其之前的所有数字 nums[j],当 nums[i] 小于等于 nums[j] 时,不做任何处理,因为不是递增序列。反之,则判断 len[i] 和 len[j] 的关系,如果 len[i] 等于 len[j] + 1,说明 nums[i] 这个数字可以加在以 nums[j] 结尾的递增序列后面,并且以 nums[j] 结尾的递增序列个数可以直接加到以 nums[i] 结尾的递增序列个数上。如果 len[i] 小于 len[j] + 1,说明找到了一条长度更长的递增序列,那么此时将 len[i] 更新为 len[j]+1,并且原本的递增序列都不能用了,直接用 cnt[j] 来代替。在更新完 len[i] 和 cnt[i] 之后,要更新 mx 和结果 res,如果 mx 等于 len[i],则把 cnt[i] 加到结果 res 之上;如果 mx 小于 len[i],则更新 mx 为 len[i],更新结果 res 为 cnt[i],参见代码如下:

解法一:

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
if (mx == len[i]) res += cnt[i];
else if (mx < len[i]) {
mx = len[i];
res = cnt[i];
}
}
return res;
}
};

下面这种方法跟上面的解法基本一样,就是把更新结果 res 放在了遍历完数组之后,我们利用 mx 来找到所有的 cnt[i],累加到结果 res 上,参见代码如下:

解法二:

class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
mx = max(mx, len[i]);
}
for (int i = ; i < n; ++i) {
if (mx == len[i]) res += cnt[i];
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/673

类似题目:

Longest Increasing Subsequence

Longest Continuous Increasing Subsequence

参考资料:

https://leetcode.com/problems/number-of-longest-increasing-subsequence/

https://leetcode.com/problems/number-of-longest-increasing-subsequence/discuss/107318/C%2B%2B-DP-with-explanation-O(n2)

https://leetcode.com/problems/number-of-longest-increasing-subsequence/discuss/107293/JavaC%2B%2B-Simple-dp-solution-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数的更多相关文章

  1. [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  2. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  3. LeetCode 673. Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  4. 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)

    [LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...

  5. Week 12 - 673.Number of Longest Increasing Subsequence

    Week 12 - 673.Number of Longest Increasing Subsequence Given an unsorted array of integers, find the ...

  6. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  7. 【LeetCode】673. Number of Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example ...

  8. 673. Number of Longest Increasing Subsequence

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

  9. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

随机推荐

  1. 【Oracle】Oracle自动内存管理AMM

    Oracle自动内存管理AMM AMM(Automatic Memory Management)自动内存管理,分配一整块内存区域,Oracle数据库自动分配管理SGA和PGA的内存.具体通过设置两个参 ...

  2. 【前端知识体系-JS相关】组件化和React

    1. 说一下使用jQuery和使用框架的区别? 数据和视图的分离,(jQuery数据和视图混在一起,代码耦合)-------开放封闭原则 以数据驱动视图(只关注数据变化,DOM操作被封装) 2.说一下 ...

  3. yii2.0的学习之旅(二)

    前言:上一次我们简单认识了一下yii2.0安装,模型基本(增,删,改,查)操作 一.前后台数据交互 *如果你觉得默认的top样式太丑,可以这样关掉* *底部也可以这样关掉* (1)mvc合作操作数据 ...

  4. 这些Python库真的很“冷”,但是却很强大

    Python是一种很棒的编程语言.事实上,它还是世界上发展最快的编程语言之一.它一次又一次证明了它在数据科学职位中的实用性.整个Python及其库的生态系统使其成为全世界用户(初学者和高级)的合适选择 ...

  5. Java多线程——ThreadLocal类的原理和使用

    Java多线程——ThreadLocal类的原理和使用 摘要:本文主要学习了ThreadLocal类的原理和使用. 概述 是什么 ThreadLocal可以用来维护一个变量,提供了一个ThreadLo ...

  6. mask-rcnn代码解读(七):display(self)函数的解析

    如和将class中定义的变量打印或读取出来,受maskrcnn的config.py的启示,我将对该函数进行解释. 我将介绍该函数前,需要对一些名词进行解释,如下: ①Ipython:ipython是一 ...

  7. php 使用fsockopen 发送http请求

    需求背景 在公司开发这么一个需求,每天三次定时催付待客服催付状态的订单,设定每天15.16.17点三次执行job任务来给一批订单打电话催付,需要三个时间点都把待客服催付的订单拨打一遍电话,根据数据组统 ...

  8. python如何通过windows命令行运行一个python程序文件?

    python如何通过windows命令行运行一个python程序文件? cmd 进入到py文件对应目录下或者直接在上面的文件地址栏输入cmd,敲入回车 定位到对应的目录下 输入python xxx.p ...

  9. Django框架(十八)—— drf:序列化组件(serializer)

    序列化组件 # 模型层 from django.db import models class Book(models.Model): nid = models.AutoField(primary_ke ...

  10. JavaScript实现的图片循环播放

    直接上干货 <html> <head> <title>Banner Cycler</title> <script> var banners ...