[LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
这道题给了我们一个数组,让求最长递增序列的个数,题目中的两个例子也很好的说明了问题。那么对于这种求极值的问题,直觉告诉我们应该要使用动态规划 Dynamic Programming 来做。其实这道题在设计 DP 数组的时候有个坑,如果将 dp[i] 定义为到i位置的最长子序列的个数的话,则递推公式不好找。但是如果将 dp[i] 定义为以 nums[i] 为结尾的递推序列的个数的话,再配上这些递推序列的长度,将会比较容易的发现递推关系。这里用 len[i] 表示以 nums[i] 为结尾的递推序列的长度,用 cnt[i] 表示以 nums[i] 为结尾的递推序列的个数,初始化都赋值为1,只要有数字,那么至少都是1。然后遍历数组,对于每个遍历到的数字 nums[i],再遍历其之前的所有数字 nums[j],当 nums[i] 小于等于 nums[j] 时,不做任何处理,因为不是递增序列。反之,则判断 len[i] 和 len[j] 的关系,如果 len[i] 等于 len[j] + 1,说明 nums[i] 这个数字可以加在以 nums[j] 结尾的递增序列后面,并且以 nums[j] 结尾的递增序列个数可以直接加到以 nums[i] 结尾的递增序列个数上。如果 len[i] 小于 len[j] + 1,说明找到了一条长度更长的递增序列,那么此时将 len[i] 更新为 len[j]+1,并且原本的递增序列都不能用了,直接用 cnt[j] 来代替。在更新完 len[i] 和 cnt[i] 之后,要更新 mx 和结果 res,如果 mx 等于 len[i],则把 cnt[i] 加到结果 res 之上;如果 mx 小于 len[i],则更新 mx 为 len[i],更新结果 res 为 cnt[i],参见代码如下:
解法一:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
if (mx == len[i]) res += cnt[i];
else if (mx < len[i]) {
mx = len[i];
res = cnt[i];
}
}
return res;
}
};
下面这种方法跟上面的解法基本一样,就是把更新结果 res 放在了遍历完数组之后,我们利用 mx 来找到所有的 cnt[i],累加到结果 res 上,参见代码如下:
解法二:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
mx = max(mx, len[i]);
}
for (int i = ; i < n; ++i) {
if (mx == len[i]) res += cnt[i];
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/673
类似题目:
Longest Increasing Subsequence
Longest Continuous Increasing Subsequence
参考资料:
https://leetcode.com/problems/number-of-longest-increasing-subsequence/
[LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数的更多相关文章
- [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- LeetCode 673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)
[LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...
- Week 12 - 673.Number of Longest Increasing Subsequence
Week 12 - 673.Number of Longest Increasing Subsequence Given an unsorted array of integers, find the ...
- leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence
Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...
- 【LeetCode】673. Number of Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example ...
- 673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
随机推荐
- 【Oracle】Oracle自动内存管理AMM
Oracle自动内存管理AMM AMM(Automatic Memory Management)自动内存管理,分配一整块内存区域,Oracle数据库自动分配管理SGA和PGA的内存.具体通过设置两个参 ...
- 【前端知识体系-JS相关】组件化和React
1. 说一下使用jQuery和使用框架的区别? 数据和视图的分离,(jQuery数据和视图混在一起,代码耦合)-------开放封闭原则 以数据驱动视图(只关注数据变化,DOM操作被封装) 2.说一下 ...
- yii2.0的学习之旅(二)
前言:上一次我们简单认识了一下yii2.0安装,模型基本(增,删,改,查)操作 一.前后台数据交互 *如果你觉得默认的top样式太丑,可以这样关掉* *底部也可以这样关掉* (1)mvc合作操作数据 ...
- 这些Python库真的很“冷”,但是却很强大
Python是一种很棒的编程语言.事实上,它还是世界上发展最快的编程语言之一.它一次又一次证明了它在数据科学职位中的实用性.整个Python及其库的生态系统使其成为全世界用户(初学者和高级)的合适选择 ...
- Java多线程——ThreadLocal类的原理和使用
Java多线程——ThreadLocal类的原理和使用 摘要:本文主要学习了ThreadLocal类的原理和使用. 概述 是什么 ThreadLocal可以用来维护一个变量,提供了一个ThreadLo ...
- mask-rcnn代码解读(七):display(self)函数的解析
如和将class中定义的变量打印或读取出来,受maskrcnn的config.py的启示,我将对该函数进行解释. 我将介绍该函数前,需要对一些名词进行解释,如下: ①Ipython:ipython是一 ...
- php 使用fsockopen 发送http请求
需求背景 在公司开发这么一个需求,每天三次定时催付待客服催付状态的订单,设定每天15.16.17点三次执行job任务来给一批订单打电话催付,需要三个时间点都把待客服催付的订单拨打一遍电话,根据数据组统 ...
- python如何通过windows命令行运行一个python程序文件?
python如何通过windows命令行运行一个python程序文件? cmd 进入到py文件对应目录下或者直接在上面的文件地址栏输入cmd,敲入回车 定位到对应的目录下 输入python xxx.p ...
- Django框架(十八)—— drf:序列化组件(serializer)
序列化组件 # 模型层 from django.db import models class Book(models.Model): nid = models.AutoField(primary_ke ...
- JavaScript实现的图片循环播放
直接上干货 <html> <head> <title>Banner Cycler</title> <script> var banners ...