[LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence.
Example 1:
Input: [1,3,5,4,7]
Output: 2
Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7].
Example 2:
Input: [2,2,2,2,2]
Output: 5
Explanation: The length of longest continuous increasing subsequence is 1, and there are 5 subsequences' length is 1, so output 5.
Note: Length of the given array will be not exceed 2000 and the answer is guaranteed to be fit in 32-bit signed int.
这道题给了我们一个数组,让求最长递增序列的个数,题目中的两个例子也很好的说明了问题。那么对于这种求极值的问题,直觉告诉我们应该要使用动态规划 Dynamic Programming 来做。其实这道题在设计 DP 数组的时候有个坑,如果将 dp[i] 定义为到i位置的最长子序列的个数的话,则递推公式不好找。但是如果将 dp[i] 定义为以 nums[i] 为结尾的递推序列的个数的话,再配上这些递推序列的长度,将会比较容易的发现递推关系。这里用 len[i] 表示以 nums[i] 为结尾的递推序列的长度,用 cnt[i] 表示以 nums[i] 为结尾的递推序列的个数,初始化都赋值为1,只要有数字,那么至少都是1。然后遍历数组,对于每个遍历到的数字 nums[i],再遍历其之前的所有数字 nums[j],当 nums[i] 小于等于 nums[j] 时,不做任何处理,因为不是递增序列。反之,则判断 len[i] 和 len[j] 的关系,如果 len[i] 等于 len[j] + 1,说明 nums[i] 这个数字可以加在以 nums[j] 结尾的递增序列后面,并且以 nums[j] 结尾的递增序列个数可以直接加到以 nums[i] 结尾的递增序列个数上。如果 len[i] 小于 len[j] + 1,说明找到了一条长度更长的递增序列,那么此时将 len[i] 更新为 len[j]+1,并且原本的递增序列都不能用了,直接用 cnt[j] 来代替。在更新完 len[i] 和 cnt[i] 之后,要更新 mx 和结果 res,如果 mx 等于 len[i],则把 cnt[i] 加到结果 res 之上;如果 mx 小于 len[i],则更新 mx 为 len[i],更新结果 res 为 cnt[i],参见代码如下:
解法一:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
if (mx == len[i]) res += cnt[i];
else if (mx < len[i]) {
mx = len[i];
res = cnt[i];
}
}
return res;
}
};
下面这种方法跟上面的解法基本一样,就是把更新结果 res 放在了遍历完数组之后,我们利用 mx 来找到所有的 cnt[i],累加到结果 res 上,参见代码如下:
解法二:
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int res = , mx = , n = nums.size();
vector<int> len(n, ), cnt(n, );
for (int i = ; i < n; ++i) {
for (int j = ; j < i; ++j) {
if (nums[i] <= nums[j]) continue;
if (len[i] == len[j] + ) cnt[i] += cnt[j];
else if (len[i] < len[j] + ) {
len[i] = len[j] + ;
cnt[i] = cnt[j];
}
}
mx = max(mx, len[i]);
}
for (int i = ; i < n; ++i) {
if (mx == len[i]) res += cnt[i];
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/673
类似题目:
Longest Increasing Subsequence
Longest Continuous Increasing Subsequence
参考资料:
https://leetcode.com/problems/number-of-longest-increasing-subsequence/
[LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数的更多相关文章
- [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- LeetCode 673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- 【LeetCode】673. Number of Longest Increasing Subsequence 解题报告(Python)
[LeetCode]673. Number of Longest Increasing Subsequence 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https:/ ...
- Week 12 - 673.Number of Longest Increasing Subsequence
Week 12 - 673.Number of Longest Increasing Subsequence Given an unsorted array of integers, find the ...
- leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence
Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...
- 【LeetCode】673. Number of Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example ...
- 673. Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
随机推荐
- iOS 一个项目添加多个TARGET
项目开发中会存在测试.正式等不同环境,需对应不同接口Host地址.项目名称等等配置.如果每次只有一个项目target的话每次打包的时候替换会很麻烦,而且容易出错.所以我们可以通过创建多个不同配置的ta ...
- Freemarker入门Demo
1:工程引入依赖 <dependency> <groupId>org.freemarker</groupId> <artifactId>freemark ...
- 统一批处理流处理——Flink批流一体实现原理
实现批处理的技术许许多多,从各种关系型数据库的sql处理,到大数据领域的MapReduce,Hive,Spark等等.这些都是处理有限数据流的经典方式.而Flink专注的是无限流处理,那么他是怎么做到 ...
- 【MySQL】条件查询之排序聚合分组分页查询
排序查询 语法:order by 子句 order by 排序字段1 排序方式1 , 排序字段2 排序方式2... 排序方式: ASC:升序,默认的. DESC:降序. 注意: 如果有多个排序条件,则 ...
- 三维网格细分算法(Catmull-Clark subdivision & Loop subdivision)附源码(转载)
转载: https://www.cnblogs.com/shushen/p/5251070.html 下图描述了细分的基本思想,每次细分都是在每条边上插入一个新的顶点,可以看到随着细分次数的增加,折 ...
- HashHelper
在C#中,数据的Hash以MD5或SHA-1的方式实现,MD5与SHA1都是Hash算法,MD5输出是128位的,SHA1输出是160位的,MD5比SHA1快,SHA1比MD5强度高. MD5与SHA ...
- B-Tree详解
之前写过一篇关于索引的文章<SQL夯实基础(五):索引的数据结构>,这次我们主要详细讨论下B-Tree. B-树 B-tree,即B树,而不要读成B减树,它是一种多路搜索树(并不是二叉的) ...
- 深入理解Vue组件3大核心概念
摘要: 搞懂Vue组件! 作者:浪里行舟 原文:详解vue组件三大核心概念 Fundebug经授权转载,版权归原作者所有. 前言 本文主要介绍属性.事件和插槽这三个vue基础概念.使用方法及其容易被忽 ...
- 【转】聊一聊-JAVA 泛型中的通配符 T,E,K,V,?
原文:https://juejin.im/post/5d5789d26fb9a06ad0056bd9 前言 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型 ...
- Android实用的Toast工具类封装
Toast这个提示框大家都晓得,显示一段时间后自动消失,不能获得焦点.但是在使用中有些问题: 1)需要弹出一个新的Toast时,上一个Toast还没有显示完2)可能重复弹出相同的信息3)Toast具体 ...