LightOJ - 1095 - Arrange the Numbers(错排)
链接:
https://vjudge.net/problem/LightOJ-1095
题意:
Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N natural numbers. You can rearrange this sequence in many ways. There will be a total of N! arrangements. You have to calculate the number of arrangement of first N natural numbers, where in first M positions; exactly K numbers are in their initial position.
For Example, N = 5, M = 3, K = 2
You should count this arrangement {1, 4, 3, 2, 5}, here in first 3 positions 1 is in 1st position and 3 in 3rd position. So exactly 2 of its first 3 are in there initial position.
But you should not count {1, 2, 3, 4, 5}.
思路:
错排:
F[n] = (n-1)*(F[n-1]+F[n-2]),F[i]为长度i的错排种类。
递推:
第一步,首元素插到剩下n-1个元素位置k。
第二步,可以选择将k插到首位置,此时就剩下n-2个,即F[n-2]
可以不插到首位置,将原本k位置元素删除,k插到首元素位置,看成k位置,则为F[n-1]
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<utility>
using namespace std;
typedef long long LL;
const int INF = 1e9;
const int MAXN = 1e3+10;
const int MOD = 1e9+7;
int n, k, m;
LL P[MAXN], F[MAXN];
LL PowMod(LL a, LL b)
{
LL res = 1;
while(b)
{
if (b&1)
res = (1LL*res*a)%MOD;
a = (1LL*a*a)%MOD;
b >>= 1;
}
return res;
}
LL Com(LL a, LL b)
{
if (b == 0 || a == b)
return 1;
return 1LL*P[a]*PowMod(P[b]*P[a-b]%MOD, MOD-2)%MOD;
}
void Init()
{
P[1] = 1;
for (int i = 2;i < MAXN;i++)
P[i] = 1LL*i*P[i-1]%MOD;
F[1] = 0, F[0] = F[2] = 1;
for (int i = 3;i < MAXN;i++)
F[i] = 1LL*(i-1)*((F[i-1]+F[i-2])%MOD)%MOD;
}
int main()
{
Init();
int cnt = 0;
int t;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cnt);
scanf("%d%d%d", &n, &m, &k);
LL res = 0LL;
for (int i = 0;i <= n-m;i++)
res = ((res + 1LL*Com(n-m, i)*F[n-k-i]%MOD)%MOD+MOD)%MOD;
res = 1LL*res*Com(m, k)%MOD;
printf(" %lld\n", res);
}
return 0;
}
LightOJ - 1095 - Arrange the Numbers(错排)的更多相关文章
- lightoj 1095 - Arrange the Numbers(dp+组合数)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题解:其实是一道简单的组合数只要推导一下错排就行了.在这里就推导一下错排 ...
- light oj 1095 - Arrange the Numbers排列组合(错排列)
1095 - Arrange the Numbers Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N ...
- Light oj 1095 - Arrange the Numbers (组合数学+递推)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题意: 给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定 ...
- Light OJ 1095 Arrange the Numbers(容斥)
给定n,m,k,要求在n的全排列中,前m个数字中恰好有k个位置不变,有几种方案?首先,前m个中k个不变,那就是C(m,k),然后利用容斥原理可得 ans=ΣC(m,k)*(-1)^i*C(m-k,i) ...
- LightOJ 1095 Arrange the Numbers-容斥
给出n,m,k,求1~n中前m个正好有k个在原来位置的种数(i在第i个位置) 做法:容斥,先选出k个放到原来位置,然后剩下m-k个不能放到原来位置的,用0个放到原来位置的,有C(m-k,0)*(n-k ...
- codeforces 340E Iahub and Permutations(错排or容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Iahub and Permutations Iahub is so happy ...
- Codeforces 888D: Almost Identity Permutations(错排公式,组合数)
A permutation \(p\) of size \(n\) is an array such that every integer from \(1\) to \(n\) occurs exa ...
- 清北学堂模拟赛day7 错排问题
/* 考虑一下已经放回m本书的情况,已经有书的格子不要管他,考虑没有书的格子,不考虑错排有(n-m)!种,在逐步考虑有放回原来位置的情况,已经放出去和已经被占好的格子,不用考虑,剩下全都考虑,设t=x ...
- UVA 11481 Arrange the Numbers(组合数学 错位排序)
题意:长度为n的序列,前m位恰好k位正确排序,求方法数 前m位选k个数正确排,为cm[m][k],剩余m - k个空位,要错排,这m - k个数可能是前m个数中剩下的,也可能来自后面的n - m个数 ...
随机推荐
- git stash详解
应用场景: 1 当正在dev分支上开发某个项目,这时项目中出现一个bug,需要紧急修复,但是正在开发的内容只是完成一半,还不想提交,这时可以用git stash命令将修改的内容保存至堆栈区,然 ...
- input获得焦点时,如何让外边框不变蓝
border 可应用于几乎所有有形的html元素,而outline 是针对链接.表单控件和ImageMap等元素设计. outline的效果将随元素的 focus 而自动出现,相应的随 blur 而自 ...
- jQuery框架"风云榜"案例
<title>电影风云榜</title> <style> /*清空默认样式*/ *{padding:0;margin:0;border:0;list-style:n ...
- AS3.0绘图API
AS3.0绘图API: /** * * *-------------------* * | *** 绘图API *** | * *-------------------* * * 编辑修改收录:fen ...
- 有助于改善性能的Java代码技巧
前言 程序的性能受到代码质量的直接影响.这次主要介绍一些代码编写的小技巧和惯例.虽然看起来有些是微不足道的编程技巧,却可能为系统性能带来成倍的提升,因此还是值得关注的. 慎用异常 在Java开发中,经 ...
- python 包 安装 加速 pip anaconda
使用 -i 参数指定源,豆瓣的很快: pip install web.py -i http://pypi.douban.com/simple anaconda: ~/.condarc channels ...
- 【洛谷 P4052】 [JSOI2007]文本生成器(AC自动机,DP)
题目链接 AC自动机上dp第一题嗷. 如果直接求可读文本的数量,显然要容斥,不好搞. 于是考虑求不可读文本的数量,再用\(26^m\)减去其即可. 建出AC自动机,如果一个节点为单词结尾或其fail链 ...
- OC与swift相互调用
一.OC调用swift文件 二.swift调用OC文件 三.注意和总结 添加: 四.自定义桥接文件 一.OC调用swift文件 在OC项目中创建一个swift文件的时候,Xcode 会提示 需要创建一 ...
- Swift之xib模块化设计
一.解决问题 Xib/Storybarod可以方便.可视化的设置约束,在开发中也越来越重要.由于Xib不能组件化,使得封装.重用都变得不可行.本文将介绍一种解决方案,来实现Xib组件化. 二.模型块原 ...
- 聊聊GIS中的坐标系|再版
本文约6500字,建议阅读时间15分钟. 作者:博客园/B站/知乎/csdn/小专栏 @秋意正寒 版权:转载请告知,并在转载文上附上转载声明与原文链接(https://www.cnblogs.com/ ...