【题解】Luogu P5358 [SDOI2019]快速查询
原题传送门
神鱼说这道题是强制离线(smog
我们珂以把被单点修改,单点查询的点单独拿出来处理,把每个数表示成\(mul*x+plus\)
初始状态下\(mul=1,plus=0\)
操作1:在总和中减去\(val[pos[x]]\)(\(pos\)表示离散化后的位置,\(val\)表示特殊点的数值);将\(val[pos[x]]\)变成\(\frac{val_{new}-plus}{mul}\);如果\(pos[x]\)不在非零位置的栈中,将\(pos[x]\)压入栈中;在总和中加上\(val_{new}\)
操作2:将\(plus\)加上\(val\),将总和更新
操作3:当乘的值不为\(0\)时,将\(mul\)、\(plus\)和总和都乘上这个值;当乘的值为\(0\)时,将所有数赋值为\(0\),见操作4
操作4:把值不为\(0\)的栈弹空,并将\(val[sta[top]]\)变成\(0\),并且将\(mul\)变成\(1\),将\(plus\)变成\(val\),将总和更新
操作5/6:val[pos[x]]或总和
有除法,要处理逆元
#include <bits/stdc++.h>
#define N 100005
#define mod 10000019
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int fastpow(register int a,register int b)
{
int res=1;
while(b)
{
if(b&1)
res=1ll*res*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return res;
}
int n,m,t,ans,b[N*100],tot,sum,mul=1,pls,inv=1,f[N],in[N];
inline void modify(register int x,register int y)
{
sum=(sum+1ll*(mod-f[x])*mul+mod-pls)%mod;
f[x]=1ll*(y-pls+mod)*inv%mod;
if(!in[x])
b[++tot]=x,in[x]=1;
sum=(sum+y)%mod;
}
inline void plu(register int y)
{
sum=(sum+1ll*n*y)%mod;
pls=(pls+y)%mod;
}
inline void cover(register int y)
{
while(tot)
f[b[tot]]=0,in[b[tot--]]=0;
mul=inv=1,pls=y;
sum=1ll*n*y%mod;
}
inline void mult(register int y,register int z)
{
if(y)
{
sum=1ll*sum*y%mod;
mul=1ll*mul*y%mod;
pls=1ll*pls*y%mod;
inv=1ll*inv*z%mod;
}
else
cover(0);
}
inline int query(register int x)
{
return (1ll*f[x]*mul+pls)%mod;
}
int opt[N],x[N],y[N],z[N];
int main()
{
n=read()%mod,m=read();
for(register int i=0;i<m;++i)
{
opt[i]=read();
if(opt[i]==1||opt[i]==5)
x[i]=b[++tot]=read();
if(opt[i]<=4)
y[i]=(read()%mod+mod)%mod,z[i]=fastpow(y[i],mod-2);
}
sort(b+1,b+1+tot);
tot=unique(b+1,b+1+tot)-b-1;
for(register int i=0;i<m;++i)
if(opt[i]==1||opt[i]==5)
x[i]=lower_bound(b+1,b+1+tot,x[i])-b;
t=read();
for(register int i=tot=0;i<t;++i)
{
int a=read()%m,b=read()%m;
for(register int j=0,k=(a+b)%m;j<m;++j,k=(k+b)%m)
{
int o=opt[k];
if(o==1)
modify(x[k],y[k]);
else if(o==2)
plu(y[k]);
else if(o==3)
mult(y[k],z[k]);
else if(o==4)
cover(y[k]);
else if(o==5)
ans=(ans+query(x[k]))%mod;
else
ans=(ans+sum)%mod;
}
}
write(ans);
return 0;
}
【题解】Luogu P5358 [SDOI2019]快速查询的更多相关文章
- luogu P5358 [SDOI2019]快速查询【模拟(?)】
把有单点修改和查询的点离散进一个数组,然后单点修改直接改,记录一个修改时间t,维护一个sm表示这些离散的点的和,val表示出了离散点其他点的值,因为都是一样的所以只记录这一个值即可,记录ljlc为加法 ...
- P5358 [SDOI2019]快速查询
思路:...乱搞数据结构?? 提交:1次 题解: 观察到除了单点就是全局操作,所以我们维护一个全局加法标记add和乘法标记mul和答案sum. 单点修改时,比如我们要把 \(pos\) 位置改成 \( ...
- [SDOI2019]快速查询——模拟
题目链接: [SDOI2019]快速查询 对于整个序列维护一个标记$(k,b)$表示序列的每个数的真实值为$k*a_{i}+b$(注意要实时维护$k$的逆元),并记录序列的和. 对于单点修改,将$a_ ...
- [SDOI2019]快速查询
[SDOI2019]快速查询 [题目链接] 链接 [思路要点] 据说是 \(\text{SDOI2019}\) 最水的题 操作次数为 \(1e7\) 范围,显然要求每次操作 \(\mathcal{O} ...
- vijos2051 SDOI2019 快速查询
题目链接 吐槽 竟然让\(nlog\)的做法卡过去了.. 思路 因为\(1 \le q \le 10^5\),所以可以先对每个标准操作,所操作的位置进行重标号.这样所有的下标都是在\(10^5\)以内 ...
- 【洛谷5358】[SDOI2019] 快速查询(模拟)
点此看题面 大致题意: 有单点赋值.全局加法.全局乘法.全局赋值.单点求值.全局求和\(6\)种操作.现在给出操作序列,以及\(t\)对正整数\(a_i,b_i\).让你处理\(t*q\)次操作,每次 ...
- SDOI2019快速查询
链接 vijos 思路 虽然询问1e7,但他询问很有意思,所以最多修改1e5个. 先把他们修改的点缩小到1e5之内并没有什么影响. 然后维护mul和add.不修改很好弄,修改的点可以弄点式子加加减减弄 ...
- 快速查询Python脚本语法
/********************************************************************* * 快速查询Python脚本语法 * 说明: * Char ...
- 一种快速查询多点DS18B20温度的方法(转)
源:http://hi.baidu.com/james_xiao/item/79b961c90623093e45941623 一种快速查询多点DS18B20温度的方法 引言 为了满足实时性要 ...
随机推荐
- 分布式id的生成方式——雪花算法
雪花算法是twitter开源的一个算法. 由64位0或1组成,其中41位是时间戳,10位工作机器id,12位序列号,该类通过方法nextID()实现id的生成,用Long数据类型去存储. 我们使用id ...
- Redis缓存穿透、缓存雪崩、redis并发问题 并发竞争key的解决方案 (阿里)
阿里的人问我 缓存雪崩(大量数据在同一时间过期了)了如何处理,缓存击穿了如何处理,回答的很烂,做了总结: 把redis作为缓存使用已经是司空见惯,但是使用redis后也可能会碰到一系列的问题,尤其是数 ...
- 主题模型TopicModel:主题模型LDA的应用
http://blog.csdn.net/pipisorry/article/details/45665779 主题模型LDA的应用 拿到这些topic后继续后面的这些应用怎么做呢:除了推断出这些主题 ...
- Guava集合工具
JDK提供了一系列集合类,如下所示,极大的方便了开发工作,并针对这些类提供了一个工具类java.util.Collections,Guava在此基础上添加了一些常用工具类方法,相比于java.util ...
- dubbo源码分析之过滤器Filter-12
https://blog.csdn.net/luoyang_java/article/details/86682668 Dubbo 是阿里巴巴开源的一个高性能优秀的服务框架,使得应用可通过高性能的 R ...
- Awesome Knowledge-Distillation
Awesome Knowledge-Distillation 2019-11-26 19:02:16 Source: https://github.com/FLHonker/Awesome-Knowl ...
- Multihypothesis Trajectory Analysis for Robust Visual Tracking
Multihypothesis Trajectory Analysis for Robust Visual Tracking 2019-10-27 14:33:49 Paper: https://ww ...
- centos 7 U盘 uefi 模式装机
公司买了一台新的dell机器,因为装的是window ,所以想给改成Centos 的做服务器,但是问题来了,一上来装好,就完全进入不了引导系统,换了ubuntu 有一次意外装上了,但一直是什么原因,然 ...
- 蓝牙BLE: 蓝牙(BLE)协议栈
蓝牙协议是通信协议的一种,一般而言,我们把某个协议的实现代码称为协议栈(protocol stack),BLE协议栈就是实现低功耗蓝牙协议的代码,理解和掌握BLE协议是实现BLE协议栈的前提.当前的蓝 ...
- Linux部署springboot项目,两种方式
部署jar包(官方推荐) 在linux服务器上运行Jar文件时通常的方法是: $ java -jar test.jar 这种方式特点是ssh窗口关闭时,程序中止运行.或者是运行时没法切出去执行其他任务 ...