---恢复内容开始---

Subsequence
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10487   Accepted: 4337

Description

A sequence of N positive integers (10 < N < 100 000), each of them less than or equal 10000, and a positive integer S (S < 100 000 000) are given. Write a program to find the minimal length of the subsequence of consecutive elements of the sequence, the sum of which is greater than or equal to S.

Input

The first line is the number of test cases. For each test case the program has to read the numbers N and S, separated by an interval, from the first line. The numbers of the sequence are given in the second line of the test case, separated by intervals. The input will finish with the end of file.

Output

For each the case the program has to print the result on separate line of the output file.if no answer, print 0.

Sample Input

2
10 15
5 1 3 5 10 7 4 9 2 8
5 11
1 2 3 4 5

Sample Output

2
3

Source

 
题意:给你n个一连串的数字,求不小于m的最短的连续的数字长度;
分析:暴力的话复杂度n^2,肯定会超时,有两种方法,都要掌握,第一种是lower_bound函数的使用,lower_bound的复杂度是log(n)。所以该算法的复杂度是nlog(n),相比于暴力,算法的优化仅仅体现在使用了lower_bound将n变为了log(n).
#include<cstdio>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long LL;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
long long mid,l,r,n,m;
int sum[100005];
int main()
{
int n,cas,s,k,ans,res;
cin>>cas;
while(cas--)
{
scanf("%d %d",&n,&s);
sum[0]=0;ans=100005;
for(int i=1;i<=n;i++)
{
scanf("%d",&sum[i]);
sum[i]+=sum[i-1];   //将数组求和是常用的技巧
}
if(sum[n]<s)
{
cout<<"0"<<endl;
continue;
}
for(k=0;sum[n]-sum[k]>=s;k++)  //枚举起点
{
res=lower_bound(sum+k,sum+n+1,sum[k]+s)-(sum+k);  //第一个大于等于该值的位                                          //置
if(res<ans)
ans=res;
}
printf("%d\n",ans);
}
return 0;
}

  下面重点介绍尺取法:

  尺取法的核心思想:假设当前a[s]+s[s+1]+...a[t]是最初>=sum的,那么当s变为s+1时,即a[s+1]+s[s+2]+...a[t+n]要想仍然成为最初>=sum的,则t+n>=t(a[s]可能为0),依据这一思想,可以设置两个”指针“,一个指向p一连续序列的开头位置,另一头q指向结尾位置,该子序列之和>=sum,则当p向右推移时,则q也应向右推移直到两指针之间的序列之和再次最初>=sum,复杂度是O(n),其实觉得尺取法最显著的优势就在于能够保存中间一部分子序列的计算结果,这也是其复杂度更低的原因。

#include<cstdio>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long LL;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
long long mid,l,r,n,m;
int a[100005];
int main()
{
int n,cas,s;
cin>>cas;
while(cas--)
{
scanf("%d %d",&n,&s);
a[0]=0;a[n+1]=0;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
int p=0,q=0,v=0,ans=n+1;
while(v<s&&q<=n)
{
q++;
v+=a[q];
}
if(q==n+1)
{
cout<<"0"<<endl;
continue;
}
for(;;)
{
while(v<s&&q<=n)
{
q++;
v+=a[q];
}
if(q==n+1)
break;
if(ans>q-p)
ans=q-p;
p++;
v-=a[p];
}
printf("%d\n",ans);
}
return 0;

  

POJ 3061  Subsequence   尺取法   挑战146页的更多相关文章

  1. POJ 3061 Subsequence(尺取法)

    Subsequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18145   Accepted: 7751 Desc ...

  2. POJ 3061 Subsequence 尺取法 POJ 3320 Jessica's Reading Problem map+set+尺取法

    Subsequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13955   Accepted: 5896 Desc ...

  3. POJ 3061 Subsequence 尺取法

    转自博客:http://blog.chinaunix.net/uid-24922718-id-4848418.html 尺取法就是两个指针表示区间[l,r]的开始与结束 然后根据题目来将端点移动,是一 ...

  4. POJ 3061 Subsequence 尺取法,一个屌屌的O(n)算法

    Subsequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9050   Accepted: 3604 Descr ...

  5. poj 3061 题解(尺取法|二分

    题意 $ T $ 组数据,每组数据给一个长度 $ N $ 的序列,要求一段连续的子序列的和大于 $ S $,问子序列最小长度为多少. 输入样例 2 10 15 5 1 3 5 10 7 4 9 2 8 ...

  6. POJ 3061 Subsequence 尺取

    Subsequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14698   Accepted: 6205 Desc ...

  7. POJ 3061 Subsequence 二分或者尺取法

    http://poj.org/problem?id=3061 题目大意: 给定长度为n的整列整数a[0],a[1],--a[n-1],以及整数S,求出总和不小于S的连续子序列的长度的最小值. 思路: ...

  8. POJ 3061 Subsequence ( 尺取法)

    题目链接 Description A sequence of N positive integers (10 < N < 100 000), each of them less than ...

  9. 题解报告:poj 3061 Subsequence(前缀+二分or尺取法)

    Description A sequence of N positive integers (10 < N < 100 000), each of them less than or eq ...

  10. POJ 3061 Subsequence【二分答案】||【尺取法】

    <题目链接> 题目大意: 给你一段长度为n的整数序列,并且给出一个整数S,问你这段序列中区间之和大于等于S的最短区间长度是多少. 解题分析:本题可以用二分答案做,先求出前缀和,然后枚举区间 ...

随机推荐

  1. 那些年,我们见过的 Java 服务端乱象

    导读 查尔斯·狄更斯在<双城记>中写道:“这是一个最好的时代,也是一个最坏的时代.” 移动互联网的快速发展,出现了许多新机遇,很多创业者伺机而动:随着行业竞争加剧,互联网红利逐渐消失,很多 ...

  2. 十进制快速幂(牛客多校第五场)-- generator 1

    思路: 十进制快速幂. #include <stdio.h>//sprintf #include <cstdlib>////malloc exit strcat itoa sy ...

  3. Django项目运行端口被占用

    error:以一种访问权限不允许的方式做了一个访问套接字的尝试,是8000端口被其他程序占用了,杀掉占用的程序就可以 (1)查找哪个进程占用了8000端口 `E:\sign_system\guest& ...

  4. 剑指Offer 1-41 代码(python实现)

    今天主要写了一下offer 1-41题,余下的稍后整理 1 """ 1 镜像二叉树: 递归 """ def mirror(root): if ...

  5. try catch和finally

    在C#中这三个关键字用于处理异常. 这三个关键字try是必定要用的,要不然就失去了意义.然后catch和finally可以不用但是要注意遵循原则. 存在一个或多个catch的时可以不用finally, ...

  6. sql server isnull函数

    isnull函数 --ISNULL() 函数用于规定如何处理 NULL 值 语法:SELECT ISNULL(check_expression, replacement_value) --check_ ...

  7. Arduino控制LED灯(开关控制)

    问题:当使用"digitalRead(BUT) == 1"控制LED灯时会出现"digitalWrite(LED, ledState);"的值出现跳动. 原因: ...

  8. PostgreSQL 自增主键

    1.自增主键:2.创建序列 一.使用SERIAL自增主键 create table test_no( id SERIAL primary key, name ) ); 二.创建序列 INCREMENT ...

  9. 转载: Ubuntu 在命令下,安装中文环境的方法。

    转载: https://blog.csdn.net/zhangchao19890805/article/details/52743380 安装英文版ubuntu,在打开含有中文字符文件时会乱码,有需要 ...

  10. 【版本控制工具】 Git进阶1

    一.Git常用命令 Git中的很多命令与Linux相同(比如修改,查询,编辑,移动等),这里可以参考我之前的一篇文章https://www.cnblogs.com/ywb-articles/p/105 ...