In most professional sporting events, cheerleaders play a major role in entertaining the spectators. Their
roles are substantial during breaks and prior to start of play. The world cup soccer is no exception.
Usually the cheerleaders form a group and perform at the centre of the eld. In addition to this group,
some of them are placed outside the side line so they are closer to the spectators. The organizers would
like to ensure that at least one cheerleader is located on each of the four sides. For this problem, we
will model the playing ground as an M N rectangular grid. The constraints for placing cheerleaders
are described below:
There should be at least one cheerleader on each of the four sides. Note that, placing a cheerleader
on a corner cell would cover two sides simultaneously.
There can be at most one cheerleader in a cell.
All the cheerleaders available must be assigned to a cell. That is, none of them can be left out.
The organizers would like to know, how many ways they can place the cheerleaders while maintaining
the above constraints. Two placements are different, if there is at least one cell which contains a
cheerleader in one of the placement but not in the other.
Input
The rst line of input contains a positive integer T 50, which denotes the number of test cases. T
lines then follow each describing one test case. Each case consists of three nonnegative integers, 2 M,
N 20 and K 500. Here M is the number of rows and N is the number of columns in the grid. K
denotes the number of cheerleaders that must be assigned to the cells in the grid.
Output
For each case of input, there will be one line of output. It will rst contain the case number followed by
the number of ways to place the cheerleaders as described earlier. Look at the sample output for exact
formatting. Note that, the numbers can be arbitrarily large. Therefore you must output the answers
modulo 1000007.
Sample Input
2
2 2 1
2 3 2
Sample Output
Case 1: 0
Case 2: 2

给你一个n*m大的操场,上面站上k个啦啦队元,每个格子最多站1人,规定第一行,最后一行,第一列,最后一列必须站有队员。一共多少种方法。

这个题首先感觉是分类讨论,但是在计数的时候还是有些困难。那么从对立面开始思考呢?假如要求是第一行、列,最后一行、列不占人的话,那不就是很简单的C(x,y)的组合数问题了。

现在我们第一行不站拉拉队员的状态为A。最后一行不站拉拉队员的状态为B。第一列不站拉拉队员状态为C。最后一列不站拉拉队员的站立状态为D。

总情况为sum=C(m*n,k),根据容斥原理

那么我要的结果ans=sum-[(A+B+C+D)-(AB+AC+AD+AC+BC+BD+CD)+(ABC+ABD+BCD)-(ABCD)]

下面这个容斥原理怎样实现呢?用二进制表示ABCD 4个状态是否取到,sum->0,A->1,B->2,C->4,D->8,AC->3,ABCD->15。这样分成了16种状态

 #include <bits/stdc++.h>

 using namespace std;
#define M 505
const int mod =;
long long int c[M][M];
void init()//用递推公式来写组合数
{
memset(c,,sizeof c);
c[][]=;
for(int i=;i<M;++i)
{
c[i][]=c[i][i]=;
for (int j=;j<i;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%mod;//注意取模
}
}
int main()
{
init();
int t;
scanf("%d",&t);
int casee=;
while (t--)
{
int n,m,k;
long long int sum=;
scanf("%d%d%d",&n,&m,&k);
for (int s=;s<;++s)
{
int r=n,c1=m,bin=;//bin来表示二进制状态
if (s&){r--;bin++;}
if (s&){r--;bin++;}
if (s&){c1--;bin++;}
if (s&){c1--;bin++;}
if (bin&)//激活状态为奇数
sum=(sum+mod-c[r*c1][k])%mod;//减法取模这样写
else
sum=(sum+c[r*c1][k])%mod;
}
printf("Case %d: ",++casee);
printf("%lld\n",sum);
}
return ;
}

UVa 11806 Cheerleaders (容斥原理+二进制表示状态)的更多相关文章

  1. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  2. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  3. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  4. UVA - 11806 Cheerleaders (容斥原理)

    题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法. 分析: 1.集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放. 则这四行必须放=随便放C[ ...

  5. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  6. UVA 11806 Cheerleaders (容斥原理

    1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...

  7. UVa 11806 Cheerleaders (数论容斥原理)

    题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...

  8. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

  9. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

随机推荐

  1. S1 Python 基础

    定义规范 声明变量 name = "Alex Li" 变量定义规则 变量名只能是 字母.数字或下划线的任意组合 变量名的第一个字符不能是数字 以下关键字不能声明为变量名['and' ...

  2. excel 中相乘函数

    excel  中相乘函数   “PRODUCT”并且是公式的框框,格式要是 常规,不能是文本

  3. 5 November in 614

    Contest A. ssoj2964 交错的士兵 \(n\) 个数的排列,从左到右依次为 1, 2, -, \(n\).\(n\) 次操作,对于第 \(i\) 次操作,从左到右分成很多段,每段 \( ...

  4. 后端技术杂谈3:Lucene基础原理与实践

    本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...

  5. JS获取浏览器地址栏的多参数值的任意值

    常用的几个方法就不讲了,这里我用的是两个方法组 使用方法是: getParamValue("id"); http://localhost:2426/TransactionNotes ...

  6. IIS的站点配置存储在applicationHost.config

    C:\Windows\System32\inetsrv\Config\applicationHost.config

  7. 编译-构建Shell语法的语法树(parse tree)

    翻译自:Generating a parse tree from a shell grammar - DEV Community

  8. 测开之路三十五:css引入

    CSS是一种定义样式结构,如字体.颜色.位置等的语言,被用于描述网页上的信息格式化和现实的方式.CSS样式可以直接存储于HTML网页或者单独的样式单文件.无论哪一种方式,样式单包含将样式应用到指定类型 ...

  9. 通过TCP/IP连接Mysql数据库

    问题:mysql只能用localhost或127.0.0.1连接 解决:mysql安装完后,默认是root用户,root用户只能在服务器登录,需要分配新用户. 1.以root用户登陆mysql数据库. ...

  10. HTML表单实例

    HTML表单 表单用于搜集不同类型的用户输入,表单由不同类型的标签组成,实现一个特定功能的表单区域(比如:注册), 首先应该用<form>标签来定义表单区域整体,在此标签中再使用不同的表单 ...