from http://blog.csdn.net/qq_31780525/article/details/72280284

tf.expand_dims()

Function

tf.expand_dims(input, axis=None, name=None, dim=None)

Inserts a dimension of 1 into a tensor’s shape. 
在第axis位置增加一个维度

Given a tensor input, this operation inserts a dimension of 1 at the dimension index axis of input’s shape. The dimension index axis starts at zero; if you specify a negative number for axis it is counted backward from the end.

给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。

This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape [height, width, channels], you can make it a batch of 1 image with expand_dims(image, 0), which will make the shape [1, height,
width, channels].

如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。

For example:

  1. # 't' is a tensor of shape [2]
  2. shape(expand_dims(t, 0)) ==> [1, 2]
  3. shape(expand_dims(t, 1)) ==> [2, 1]
  4. shape(expand_dims(t, -1)) ==> [2, 1]
  5. # 't2' is a tensor of shape [2, 3, 5]
  6. shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
  7. shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
  8. shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

Args:

input: A Tensor. 
axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of input. 
name: The name of the output Tensor. 
dim: 0-D (scalar). Equivalent to axis, to be deprecated.

输入:张量。
轴:0-D(标量)。 指定扩大输入形状的维度索引。
名称:输出名称Tensor。
dim:0-D(标量)。 等同于轴,不推荐使用。

Returns:

A Tensor with the same data as input, but its shape has an additional dimension of size 1 added.

tf.squeeze()

Function

tf.squeeze(input, squeeze_dims=None, name=None)

Removes dimensions of size 1 from the shape of a tensor. 
从tensor中删除所有大小是1的维度

Given a tensor input, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don’t want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying squeeze_dims.

给定张量输入,此操作返回相同类型的张量,并删除所有尺寸为1的尺寸。 如果不想删除所有尺寸1尺寸,可以通过指定squeeze_dims来删除特定尺寸1尺寸。
如果不想删除所有大小是1的维度,可以通过squeeze_dims指定。

For example:

  1. # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
  2. shape(squeeze(t)) ==> [2, 3]
  3. Or, to remove specific size 1 dimensions:
  4. # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
  5. shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]

Args:

input: A Tensor. The input to squeeze. 
squeeze_dims: An optional list of ints. Defaults to []. If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. 
name: A name for the operation (optional).

输入:张量。 输入要挤压。
squeeze_dims:可选的ints列表。 默认为[]。 如果指定,只能挤压列出的尺寸。 维度索引从0开始。挤压不是1的维度是一个错误。
名称:操作的名称(可选)。

Returns:

A Tensor. Has the same type as input. Contains the same data as input, but has one or more dimensions of size 1 removed.

张量。 与输入的类型相同。 包含与输入相同的数据,但具有一个或多个删除尺寸1的维度

tf.expand_dims和tf.squeeze函数的更多相关文章

  1. tensorflow 笔记14:tf.expand_dims和tf.squeeze函数

    tf.expand_dims和tf.squeeze函数 一.tf.expand_dims() Function tf.expand_dims(input, axis=None, name=None, ...

  2. tensorflow 基本函数(1.tf.split, 2.tf.concat,3.tf.squeeze, 4.tf.less_equal, 5.tf.where, 6.tf.gather, 7.tf.cast, 8.tf.expand_dims, 9.tf.argmax, 10.tf.reshape, 11.tf.stack, 12tf.less, 13.tf.boolean_mask

    1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow ...

  3. tf.expand_dims 来增加维度

    主要是因为tflearn官方的例子总是有embeding层,去掉的话要conv1d正常工作,需要加上expand_dims network = input_data(shape=[None, 100] ...

  4. tf.expand_dims

    想要增加一维,可以使用tf.expand_dims(input, dim, name=None)函数 t = np.array(np.arange(1, 1 + 30).reshape([2, 3, ...

  5. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  6. tensorflow笔记4:函数:tf.assign()、tf.assign_add()、tf.identity()、tf.control_dependencies()

    函数原型: tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)   Defined in tensorflo ...

  7. TensorFlow函数(九)tf.add_to_collection()、tf.get_collection() 和 tf.add_n()

    tf.add_to_collection(name, value) 此函数将元素添加到列表中 参数: name:列表名.如果不存在,创建一个新的列表 value:元素 tf.get_collectio ...

  8. TensorFlow函数(四)tf.trainable_variable() 和 tf.all_variable()

    tf.trainable_variable() 此函数返回的是需要训练的变量列表 tf.all_variable() 此函数返回的是所有变量列表 v = tf.Variable(tf.constant ...

  9. TensorFlow函数(三)tf.variable_scope() 和 tf.name_scope()

    tf.name_scope() 此函数作用是共享变量.在一个作用域scope内共享一些变量,简单来说,就是给变量名前面加个变量空间名,只限于tf.Variable()的变量 tf.variable_s ...

随机推荐

  1. java:Topic About(猴子吃桃,快速排序,选择排序,插入排序)

    1. 猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不瘾,又多吃了一个 第二天早上又将剩下的桃子吃掉一半,又多吃了一个.以后每天早上都吃了前一天剩下的一半零一个.到第10天早上想再吃时,见只 ...

  2. MariaDB select

    1.环境部署: syntax语法错误 查询基本使用(条件,排序,聚合函数,分组,分页) --创建学生表 create table students ( id int unsigned not null ...

  3. git 新建项目的一些操作

    Command line instructions Git global setup git config --global user.name "Administrator" g ...

  4. Day06:抽象类、接口和内部类(上)

    JVAV中的常量 什么是常量? 常量就是不会变化的数值 为什么需要常量? 方便使用(调用)不会变化的数值 特性 不能修改 所有对象共享 常量一定是成员 定义 public static final 类 ...

  5. centos6.5安装mysql报错

    安装完mysql后,mysql服务无法打开. 报错 查看mysql日志 执行命令:less /var/log/mysqld.log  发现是权限不够,不能创建pid文件.因此改变权限,再次启动服务 问 ...

  6. Ubuntu16.04安装NVIDIA驱动、实现GPU加速

    NVIDIA驱动前前后后装了好几遍,下面把个人的经验分享下,大家仅供参考. 老规矩,先引用师兄的(最详细)https://blog.csdn.net/sinat_23853639/article/de ...

  7. tomcat7远程代码执行 ImageMagick 命令执行漏洞

    tomcat7远程代码执行 windows     / linux   ::$DATA ImageMagick 命令执行漏洞(CVE-2016–3714) base64编码

  8. 20191128 Spring Boot官方文档学习(10)

    10.附录 附录A:通用应用程序属性 附录B:配置元数据 附录C:自动配置类 附录D:测试的自动配置注释 附录E:可执行的Jar格式 附录F:依赖版本

  9. java 依据文件名判断mime类型

    依据文件名称判断mime类型 import java.util.HashMap; import java.util.Map; /** * 依据文件名获取MimeType */ public class ...

  10. Spring(六)--Spring配置文件之间的关系

    Spring配置文件之间的关系 1.需要的实体类 2.需要的xml文件 3.测试类 未完待续!!!