HDU 5667 构造矩阵快速幂

题目描述

解析

我们根据递推公式

则可得到Q的指数关系式

求Q构造矩阵

同时有公式

其中φ为欧拉函数,且当p为质数时有

代码

#include <cstdio>

using namespace std;

long long pow_mod(long long a, long long p, long long mod) {
if (p == 0) return 1;
long long ans = pow_mod(a, p / 2, mod);
ans = (ans * ans) % mod;
if (p % 2) ans = (ans * a) % mod;
return ans;
} long long get_p(long long c, long long n, long long mod) {
long long ans[3][3] = {{0, 0, 0}, {1, 0, 0}, {1, 0, 0}};
long long a[3][3] = {{0, 1, 0}, {1, c, 1}, {0, 0, 1}};
long long b[3][3];
while (n) {
if (n & 1) {
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
b[i][j] = 0;
for (int k = 0; k < 3; k++) {
b[i][j] += a[i][k] * ans[k][j];
b[i][j] %= mod;
}
}
}
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
ans[i][j] = b[i][j];
}
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
b[i][j] = 0;
for (int k = 0; k < 3; k++) {
b[i][j] += a[i][k] * a[k][j];
b[i][j] %= mod;
}
}
}
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
a[i][j] = b[i][j];
n >>= 1;
}
return ans[1][0];
} int T;
long long n, a, b, c, p;
long long phi; int main() {
scanf("%d", &T);
while (T--) {
scanf("%I64d %I64d %I64d %I64d %I64d", &n, &a, &b, &c, &p);
if (n <= 2) phi = n - 1;
else phi = get_p(c, n - 2, p - 1);
printf("%I64d\n", pow_mod(pow_mod(a, b, p), phi, p));
}
return 0;
}

HDU 5667 构造矩阵快速幂的更多相关文章

  1. HDU 5667 Sequence 矩阵快速幂+费马小定理

    题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...

  2. HDU 5667 Sequence 矩阵快速幂

    官方题解: 观察递推式我们可以发现,所有的fi​​都是a的幂次,所以我们可以对f​i​​取一个以a为底的log,g​i​​=log​a​​ f​i​​ 那么递推式变g​i​​=b+c∗g​i−1​​+ ...

  3. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  4. hdu 4565 So Easy! (共轭构造+矩阵快速幂)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 题目大意: 给出a,b,n,m,求出的值, 解题思路: 因为题目中出现了开根号,和向上取整后求 ...

  5. hdu4686 Arc of Dream ——构造矩阵+快速幂

    link: http://acm.hdu.edu.cn/showproblem.php?pid=4686 构造出来的矩阵是这样的:根据题目的ai * bi = ……,可以发现 矩阵1 * 矩阵3 = ...

  6. HDU 6470 【矩阵快速幂】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 写这道题是为了让自己不要忘记矩阵快速幂如何推出矩阵式子的. 注意 代码是TLE的!! #incl ...

  7. HDU 6185 Covering 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...

  8. hdu 6395Sequence【矩阵快速幂】【分块】

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

  9. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. Skyline(6.x)-二次开发手册使用技巧

    毕业设计选择 Skyline 的 Web 端二次开发,由于以前没有接触过 ActiveX 控件的使用,二次开发手册是英文的读起来有点吃力,并且 IE 直接控制台输出 ActiveX 控件创建的对象看不 ...

  2. linux常用命令之文档

     不常用,经常就会遗忘,mygod,不用则退化... 目录管理命令 ls:列出指定目录下的内容格式:ls [OPTION]... [FILE]... -a:显示所有文件包括隐藏文件 -A:显示除.和. ...

  3. 测开之路六十六:UI测试平台之处理逻辑和蓝图添加到程序入口

    from selenium import webdriverfrom common import get_case_idfrom common.mongo import Mongo class Log ...

  4. Spring 注解配置 WebApplicationContext

    https://docs.spring.io/spring-framework/docs/4.3.9.RELEASE/spring-framework-reference/htmlsingle/#be ...

  5. CodeIgniter 技巧 - 通过 Composer 安装 CodeIgniter 框架并安装依赖包

    PHP 项目中,通过 Composer 来管理各种依赖包,类似 Java 中的 Maven,或 Node 中的 npm.CodeIgniter 框架要想通过 Composer 自动加载包也很简单,步骤 ...

  6. Vagrant 手册之网络 - 私有网络 private network

    原文地址 Vagrantfile 配置文件中私有网络的标识符:private_network,例如: config.vm.network "private_network", ty ...

  7. 认识requests库,以及安装方法

    1.学习requests库有什么意义 1)对我来说,我是测试人员,我用它来解决HTTP接口自动化测试 2)写爬虫需要用到requests 3)如果是开发人员,需要些接口,了解requests有助于掌握 ...

  8. pandas基础(第一章(一))

    摘要:通过简单例子,了解功能.以此作为基点,在工作中不断深入 1.设置需要显示的行列宽度(显示的最大列数和最大行数,其余部分用.....表示) 设置显示多少行多少列 import pandas as ...

  9. [Bzoj1047][HAOI2007]理想的正方形(ST表)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RM ...

  10. iview table列中根据不同的状态显示不同的颜色,显示图片

    使用reder可以实现 1.显示不同状态 2.显示图片