链接P1864 [NOI2009]二叉查找树

  • 这题还是蛮难的……是我菜。
  • 题目描述中的一大堆其实就是在描述\(treap.\),考虑\(treap\)的一些性质:
  • 首先不管怎么转,中序遍历是确定的,所以先按照数据值排序,变成序列问题。
  • 其次是父亲的权值比儿子小,但是这是个相对关系,所以对权值离散。
  • 问题变成了对一个中序构造一棵树使得满足\(treap\)的第二条性质。
  • 设\(f_{l,r,v}\)表示区间\(l,r\),最小权值大于等于\(v\)的最小代价,这种状态的好处在于我们可以快速知道一段序列的父亲应该最小要多大才可以,因为父亲的权值是一定小于所有儿子的,所以小于等于\(v\)就可以了。
  • 转移首先有:$$

    f_{l,r,v}=min(f_{l,p-1,v}+f_{p+1,r,v}+K+P);$$
  • 其中\(K\)是一次修改代价,\(P\)是区间和,\(p\)是枚举的父亲。
  • 这里是强制修改当前权值了。
  • 然后如果\(v_p>=v\),有$$f_{l,r,v}=min(f_{l,p-1,vl}+f_{p+1,r,vl}+P);$$
  • 其中\(vl\)是\(p\)点权值。
  • 考虑一下边界即可,注意如果\(l>r\)则\(f_{l,r,v}=0\)
#include<bits/stdc++.h>
#define R register int
#define ll long long
using namespace std;
const int N=100;
int n,len,K,O[N];
ll num[N],f[N][N][N],ans;
struct Qs{int id,vl,pd;}w[N];
int cmpid(const Qs &x,const Qs &y){return x.id<y.id;}
int gi(){
R x=0,k=1;char c=getchar();
while((c<'0'||c>'9')&&c!='-')c=getchar();
if(c=='-')k=-1,c=getchar();
while(c>='0'&&c<='9')x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*k;
}
ll Get(R l,R r,R v){
if(l>r)return 0;
if(f[l][r][v]!=-1)return f[l][r][v];
f[l][r][v]=1e18;ll P=num[r]-num[l-1];
if(l==r){f[l][r][v]=P+((w[l].vl>=v)?0:K);return f[l][r][v];}
for(R p=l;p<=r;++p){
f[l][r][v]=min(f[l][r][v],Get(l,p-1,v)+Get(p+1,r,v)+K+P);
if(w[p].vl>=v)
f[l][r][v]=min(f[l][r][v],Get(l,p-1,w[p].vl)+Get(p+1,r,w[p].vl)+P);
}
return f[l][r][v];
}
int main(){
freopen("s.in","r",stdin);
n=gi(),K=gi(),ans=1e18;
for(R i=1;i<=n;++i)w[i].id=gi();
for(R i=1;i<=n;++i)
w[i].vl=gi(),O[++len]=w[i].vl;
for(R i=1;i<=n;++i)w[i].pd=gi();
sort(w+1,w+n+1,cmpid);
sort(O+1,O+len+1),len=unique(O+1,O+len+1)-O-1;
for(R i=1;i<=n;++i){
w[i].vl=lower_bound(O+1,O+len+1,w[i].vl)-O;
num[i]=num[i-1]+w[i].pd;
}
memset(f,-1,sizeof(f));
for(R i=1;i<=len;++i)ans=min(ans,Get(1,n,i));
printf("%lld\n",ans);
return 0;
}

P1864 [NOI2009]二叉查找树的更多相关文章

  1. [洛谷P1864] NOI2009 二叉查找树

    问题描述 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结点的权值都比它的 ...

  2. 洛谷$P1864\ [NOI2009]$二叉查找树 区间$dp$

    正解:区间$dp$ 解题报告: 传送门$QwQ$ 首先根据二叉查找树的定义可知,数据确定了,这棵树的中序遍历就已经改变了,唯一能改变的就是通过改变权值从而改变结点的深度. 发现这里权值的值没有意义,所 ...

  3. Luogu P1864 [NOI2009]二叉查找树

    题目 \(v\)表示权值,\(F\)表示频率. 首先我们显然可以把这个权值离散化. 然后我们想一下,这个东西它是一棵树对吧,但是我们改变权值会引起其树形态的改变,这样很不好做,所以我们考虑把它转化为序 ...

  4. BZOJ 1564: [NOI2009]二叉查找树( dp )

    树的中序遍历是唯一的. 按照数据值处理出中序遍历后, dp(l, r, v)表示[l, r]组成的树, 树的所有节点的权值≥v的最小代价(离散化权值). 枚举m为根(p表示访问频率): 修改m的权值 ...

  5. bzoj 1564 [NOI2009]二叉查找树 区间DP

    [NOI2009]二叉查找树 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 906  Solved: 630[Submit][Status][Discu ...

  6. [BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp

    1564: [NOI2009]二叉查找树 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 612[Submit][Status] ...

  7. 题解 P1864 【[NOI2009]二叉查找树】

    #include<cstdio> #include<string> #include<cstring> #include<iostream> #incl ...

  8. NOI2009 二叉查找树 【区间dp】

    [NOI2009]二叉查找树 [问题描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左子树结点的数据值大,而比它右子树结点的数据值小.另一方面,这棵查找树中每个结点都有 ...

  9. BZOJ 1564 :[NOI2009]二叉查找树(树型DP)

    二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...

随机推荐

  1. jsp页面a标签URL转码问题

    简单的办法只有一句话,在后台对传过来的字符串(value)加一句: String value = new String(value.getBytes("ISO-8859-1"),& ...

  2. 基于vue模块化开发后台系统——构建项目

    文章目录如下:项目效果预览地址项目开源代码基于vue模块化开发后台系统--准备工作基于vue模块化开发后台系统--构建项目基于vue模块化开发后台系统--权限控制 前言 在熟悉上一篇说到准备工具之后, ...

  3. python 浮点运算

    print(format(float(a)/float(b),'.2f'))

  4. Python分析《武林外传》 -----转载

    转载原链接:http://www.cnblogs.com/fredkeke/p/8328387.html 我一向比较喜欢看武侠电影.小说,但是06年武林外传开播的时候并没有追剧,简单扫几眼之后发现他们 ...

  5. WinForm实现最小化右下角

    首先,要在窗体里面加入这么两个控件,左边的是托盘控件,右边的是菜单控件. 然后设置窗体的FormClosing事件: if (e.CloseReason == CloseReason.UserClos ...

  6. Gradel 多渠道打包 代码混淆

    http://blog.csdn.net/ttccaaa/article/details/47687241 http://www.bubuko.com/infodetail-987756.html h ...

  7. tjuthesis 图标题左对齐修改办法

    图标题格式默认是居中的. 将 format 文件里定义图表标题样式部分的 \centering 删去,可变为左对齐. 如下: %% 定制浮动图形和表格标题样式\makeatletter\long\de ...

  8. HDFS——完全分布式搭建

    架构 NN--namenode SNN--secondnamenode DN--datanode hadoop_env.sh中修改JAVA_HOME core-site.xml <propert ...

  9. csr_matrix用法

    1 csr_matrix默认对未填充的位置置为0, row = [0, 0, 0, 1, 1, 1, 2, 2, 2] # 行指标 col = [0, 1, 2, 0, 1, 2, 0, 1, 2] ...

  10. oracle--单行函数和多行函数

    单行函数 1.字符函数 函  数 功  能 示  例 结 果 INITCAP (char) 首字母大写 initcap ('hello') Hello LOWER (char) 转换为小写 lower ...