题目描述

$visit_world$有一个商店,商店里卖$N$个商品,第$i$个的价格为$a[i]$我们称一个正整数$K$是美妙的,当且仅当我们可以在商店里选购若干个商品,使得价格之和落在区间$[K,2K]$中。
问:有多少个美妙的数。


输入格式

第一行一个整数$N$。
接下来一行$N$个整数,描述数组$a[]$。


输出格式

输出一行一个整数,表示答案。


样例

样例输入:

3
1 2 3

样例输出:

6


数据范围与提示

样例解释:

可以证明$1\leqslant K\leqslant 6$都是美妙的,除此之外的数都不是美妙的。

数据范围:

子任务$1$($30$分):$N\leqslant 100,a_i\leqslant 100$。
子任务$2$($20$分):$N\leqslant 100000,a_i\leqslant 20$。
子任务$3$($20$分):$N\leqslant 3,a_i\leqslant 10^9$。
子任务$4$($30$分):$N\leqslant 10^5,a_i\leqslant 10^9$。


题解

正解不会,今天刚学柯朵莉树,于是就打了它(可惜考试的时候并不会……)

基本上就是一道柯朵莉树的板子题,不妨就拿它来讲一下柯朵莉树吧~

柯朵莉树的原理很简单,就是不断往里面添加区间,添加完之后再进行合并(有交集的两个区间合并),用$set$维护这些区间就好了。

来讲几个细节:

  $\alpha.$添加区间的时候,如果要同时添加多个区间(比如这道题),需要先枚举$set$里所有的原区间,生成新的区间并将这些区间放到$vector$里,如果直接放进去会造成死循环(当然也是错的)。

  $\beta.$合并时与前一个区间比较,会更方便处理(细节看代码)。

  $\gamma.$合并之后注意$it$指针的位置,可以用二分查找……

时间复杂度:$\Theta(n\log\log n)$(随机数据)。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int N;
int a[100001];
set<pair<int,long long>>s;
vector<pair<int,long long>>v;
long long ans;
void add(int x)
{
for(auto it=s.begin();it!=s.end();it++)
v.push_back(make_pair((*it).first+x,(*it).second+2*x));
while(v.size())
{
s.insert(v.back());
v.pop_back();
}
}
void split()
{
for(auto it=s.begin();;)
{
auto ti=it;it++;
if(it==s.end())break;
if((*ti).second>=(*it).first)
{
pair<int,long long> flag=make_pair((*ti).first,(*it).second);
s.erase(it);s.erase(ti);s.insert(flag);
it=s.lower_bound(flag);
}
}
}
int main()
{
scanf("%d",&N);
s.insert(make_pair(0,0));
for(int i=1;i<=N;i++)
{
scanf("%d",&a[i]);
add(a[i]);
split();
}
for(auto it=s.begin();it!=s.end();it++)
{
if(!(*it).first)continue;
ans+=((*it).second+1)/2-((*it).first-1)/2;
}
printf("%lld",ans);
return 0;
}

rp++

[CSP-S模拟测试]:购物(柯朵莉树)的更多相关文章

  1. 洛谷AT2342 Train Service Planning(思维,动态规划,珂朵莉树)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 建立数学模型 这种很抽象的东西没有式子描述一下显然是下不了手的. 因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\ ...

  2. [Codeforces896C] Willem, Chtholly and Seniorious (ODT-珂朵莉树)

    无聊学了一下珂朵莉树 珂朵莉树好哇,是可以维护区间x次方和查询的高效数据结构. 思想大致就是一个暴力(相对而言)的树形数据结构 lxl毒瘤太强了,发明了ODT算法(Old Driver Tree老司机 ...

  3. [转]我的数据结构不可能这么可爱!——珂朵莉树(ODT)详解

    参考资料: Chtholly Tree (珂朵莉树) (应某毒瘤要求,删除链接,需要者自行去Bilibili搜索) 毒瘤数据结构之珂朵莉树 在全是珂学家的珂谷,你却不知道珂朵莉树?来跟诗乃一起学习珂朵 ...

  4. 洛谷P4344 [SHOI2015]脑洞治疗仪(珂朵莉树)

    传送门 看到区间推倒……推平就想到珂朵莉树 挖脑洞直接assign,填坑先数一遍再assign再暴力填,数数的话暴力数 //minamoto #include<iostream> #inc ...

  5. 洛谷P2787 语文1(chin1)- 理理思维(珂朵莉树)

    传送门 一看到区间推倒……推平操作就想到珂朵莉树 区间推平直接assign,查询暴力,排序的话开一个桶统计,然后一个字母一个字母加就好了 开桶统计的时候忘了保存原来的左指针然后挂了233 //mina ...

  6. 洛谷P2082 区间覆盖(加强版)(珂朵莉树)

    传送门 虽然是黄题而且还是一波离散就能解决的东西 然而珂朵莉树还是很好用 相当于一开始区间全为0,然后每一次区间赋值,问最后总权值 珂朵莉树搞一搞就好了 //minamoto #include< ...

  7. 洛谷P2572 [SCOI2010]序列操作(珂朵莉树)

    传送门 珂朵莉树是个吼东西啊 这题线段树代码4k起步……珂朵莉树只要2k…… 虽然因为这题数据不随机所以珂朵莉树的复杂度实际上是错的…… 然而能过就行对不对…… (不过要是到时候noip我还真不敢打… ...

  8. CF915E Physical Education Lessons(珂朵莉树)

    中文题面 据说正解是动态开点线段树而且标记也不难下传的样子 然而这种区间推平的题目还是喜欢写珂朵莉树啊……码量小…… 虽然真要构造的话随便卡…… //minamoto #include<cstd ...

  9. CF896C Willem, Chtholly and Seniorious(珂朵莉树)

    中文题面 珂朵莉树的板子……这篇文章很不错 据说还有奈芙莲树和瑟尼欧里斯树…… 等联赛考完去学一下(逃 //minamoto #include<bits/stdc++.h> #define ...

随机推荐

  1. BindWeb - Bind智能DNS管理系统介绍

    2019-05-08 演示网站: https://bindw.cdneks.com demo/demo 2018-11-27 修改部署架构,取消网络共享存储设备,在每台BIND服务器启用NFS4并仅向 ...

  2. 在git bash 中配置git用户名和邮箱及查看配置信息

    Administrator@LuoTong- MINGW32 ~ $ git config --global user.name "mrluotong" Administrator ...

  3. [AGC040B]Two Contests

    Description 给出若干条线段 \((L[i], R[i])\) ,把他们分成两个非空的集合,最大化集合内线段交的和. \(n\le 10 ^ 5\) Solution 考虑最小的一个右端点 ...

  4. 封装 多态 类的约束 super

    python面向对象的三大特性:继承,封装,多态. 1. 封装: 把很多数据封装到⼀个对象中. 把固定功能的代码封装到⼀个代码块, 函数, 对象, 打包成模块. 这都属于封装的思想. 具体的情况具体分 ...

  5. hive中的索引创建

    1.在hive中创建索引所在表 create table if not exists h_odse.hxy(id int,name string,hobby array<string>,a ...

  6. IntelliJ IDEA中创建Web聚合项目(Maven多模块项目)(转载)

    创建parent项目 1.打开IDEA,注意这里不要勾选模板,用模板创建过maven项目的小伙伴都知道模板创建项目非常慢,所以这里不要选模板,需要的文件夹我们后面自己来创建就可以了.所以这个页面直接点 ...

  7. UESTC-1059 秋实大哥与小朋友(离散化+线段树)

    秋实大哥与小朋友 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit  ...

  8. MySQL 的自增 ID 用完了,怎么办?

      一.简述 在 MySQL 中用很多类型的自增 ID,每个自增 ID 都设置了初始值.一般情况下初始值都是从 0 开始,然后按照一定的步长增加.在 MySQL 中只要定义了这个数的字节长度,那么就会 ...

  9. Eclipse Git分支实战

    切换分支 右键工程,创建新分支 命名新分支 点击finish,可以看到项目已经切换到hot_fix 修改代码: Ctrl+#提交到本地仓库,之后提交到远程仓库 Next,Finish 等待一下, 点击 ...

  10. Spring基础10——Bean之间关系

    1.前言 不同的Bean之间存在两种关系:继承和依赖,这里的继承与java中的继承不同,它指的是配置上的继承. 2.继承bean配置 Spring允许继承bean的配置,被继承的bean成为父bean ...